Spaces:
Sleeping
Sleeping
import pandas as pd | |
import torch | |
from transformers import AutoTokenizer, AutoModel, set_seed | |
from tqdm import tqdm | |
from utils import clean_text | |
from model import MimicTransformer | |
set_seed(42) | |
def read_model(model, path): | |
model.load_state_dict(torch.load(path, map_location=torch.device('cuda')), strict=False) | |
return model | |
model_path = 'checkpoint_0_9113.bin' | |
mimic = MimicTransformer(cutoff=512) | |
mimic = read_model(model=mimic, path=model_path) | |
mimic.eval() | |
mimic.cuda() | |
tokenizer = mimic.tokenizer | |
summaries = pd.read_csv('all_summaries_backup.csv')['SUMMARIES'] | |
def mean_pooling(model_output, attention_mask): | |
token_embeddings = model_output[0] #First element of model_output contains all token embeddings | |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() | |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) | |
def get_model_outputs(text): | |
inputs = tokenizer(text, return_tensors='pt', padding='max_length', max_length=512, truncation=True).to('cuda') | |
outputs = mimic(input_ids=inputs.input_ids, attention_mask=inputs.attention_mask, drg_labels=None) | |
# pooled = mean_pooling(outputs[0][0], inputs['attention_mask']) | |
pooled = outputs[0][0] | |
normalized = pooled/pooled.norm(dim=1)[:,None] | |
return normalized | |
return_tensors = torch.zeros(size=(10000, 738)) | |
non_defunct_summaries = [] | |
for i, summary in tqdm(enumerate(summaries[:50000])): | |
cleaned = clean_text(summary) | |
if len(non_defunct_summaries) == 10000: | |
break | |
if len(cleaned) > 100: | |
non_defunct_summaries.append(cleaned) | |
for i, summary in tqdm(enumerate(non_defunct_summaries)): | |
res = get_model_outputs(text=summary) | |
return_tensors[i, :] = res.detach().cpu() | |
# sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) | |
# sentence_embeddings = sentence_embeddings/sentence_embeddings.norm(dim=1)[:,None] | |
pd.DataFrame(data={'SUMMARIES':non_defunct_summaries}).to_csv('all_summaries.csv', index=False) | |
torch.save(return_tensors, f='discharge_embeddings.pt') | |