|
|
import pandas as pd
|
|
|
import os
|
|
|
|
|
|
|
|
|
def get_ck(df, season, round_num, local, away, league=None):
|
|
|
"""Obtiene corners totales de un partido específico"""
|
|
|
season_round = (df['season'] == season) & (df['round'] == round_num)
|
|
|
|
|
|
if league is not None:
|
|
|
season_round = season_round & (df['league'] == league)
|
|
|
|
|
|
df = df[season_round]
|
|
|
|
|
|
df_local = df[df['team'] == local]
|
|
|
df_away = df[df['team'] == away]
|
|
|
|
|
|
total_ck = df_local["Pass Types_CK"].sum() + df_away["Pass Types_CK"].sum()
|
|
|
local_ck = df_local["Pass Types_CK"].sum()
|
|
|
visit_ck = df_away["Pass Types_CK"].sum()
|
|
|
|
|
|
total_gol = df_local["GF"].sum() + df_away["GF"].sum()
|
|
|
local_gol = df_local["GF"].sum()
|
|
|
visit_gol = df_away["GF"].sum()
|
|
|
|
|
|
total_eg = df_local["Expected_xG"].sum() + df_away["Expected_xG"].sum()
|
|
|
local_eg = df_local["Expected_xG"].sum()
|
|
|
visit_eg = df_away["Expected_xG"].sum()
|
|
|
|
|
|
total_st = df_local["Standard_SoT"].sum() + df_away["Standard_SoT"].sum()
|
|
|
local_st = df_local["Standard_SoT"].sum()
|
|
|
visit_st = df_away["Standard_SoT"].sum()
|
|
|
|
|
|
return total_ck,local_ck,visit_ck, total_gol,local_gol,visit_gol,total_eg,local_eg,visit_eg,total_st,local_st,visit_st
|
|
|
|
|
|
def get_dataframes(df, season, round_num, local, away, league=None):
|
|
|
"""Retorna 8 DataFrames filtrados por equipo, venue y liga"""
|
|
|
|
|
|
season_round = (df['season'] == season) & (df['round'] < round_num)
|
|
|
|
|
|
if league is not None:
|
|
|
season_round = season_round & (df['league'] == league)
|
|
|
|
|
|
def filter_and_split(team_filter):
|
|
|
filtered = df[season_round & team_filter].copy()
|
|
|
home = filtered[filtered['venue'] == "Home"]
|
|
|
away = filtered[filtered['venue'] == "Away"]
|
|
|
return home, away
|
|
|
|
|
|
local_home, local_away = filter_and_split(df['team'] == local)
|
|
|
local_opp_home, local_opp_away = filter_and_split(df['opponent'] == local)
|
|
|
|
|
|
away_home, away_away = filter_and_split(df['team'] == away)
|
|
|
away_opp_home, away_opp_away = filter_and_split(df['opponent'] == away)
|
|
|
|
|
|
return (local_home, local_away, local_opp_home, local_opp_away,
|
|
|
away_home, away_away, away_opp_home, away_opp_away)
|
|
|
|
|
|
def get_head_2_head(df, local, away, seasons=None, league=None):
|
|
|
"""Obtiene últimos 3 enfrentamientos directos"""
|
|
|
if seasons is None:
|
|
|
seasons = []
|
|
|
|
|
|
df_filtered = df[df['season'].isin(seasons)] if seasons else df
|
|
|
|
|
|
if league is not None:
|
|
|
df_filtered = df_filtered[df_filtered['league'] == league]
|
|
|
|
|
|
local_h2h = df_filtered[(df_filtered['team'] == local) & (df_filtered['opponent'] == away)]
|
|
|
away_h2h = df_filtered[(df_filtered['team'] == away) & (df_filtered['opponent'] == local)]
|
|
|
|
|
|
if len(local_h2h) < 4:
|
|
|
return local_h2h.tail(2), away_h2h.tail(2)
|
|
|
|
|
|
return local_h2h.tail(3), away_h2h.tail(3)
|
|
|
|
|
|
def get_points_from_result(result):
|
|
|
"""Convierte resultado (W/D/L) a puntos"""
|
|
|
if result == 'W':
|
|
|
return 3
|
|
|
elif result == 'D':
|
|
|
return 1
|
|
|
else:
|
|
|
return 0
|
|
|
|
|
|
|
|
|
def get_team_ppp(df, team, season, round_num, league=None):
|
|
|
"""
|
|
|
Calcula puntos por partido (PPP) de un equipo
|
|
|
|
|
|
Args:
|
|
|
df: DataFrame completo
|
|
|
team: Nombre del equipo
|
|
|
season: Temporada
|
|
|
round_num: Número de jornada (NO incluye esta jornada)
|
|
|
league: Código de liga (opcional)
|
|
|
|
|
|
Returns:
|
|
|
float: Puntos por partido (0-3)
|
|
|
"""
|
|
|
team_matches = df[
|
|
|
(df['team'] == team) &
|
|
|
(df['season'] == season) &
|
|
|
(df['round'] < round_num)
|
|
|
]
|
|
|
|
|
|
if league is not None:
|
|
|
team_matches = team_matches[team_matches['league'] == league]
|
|
|
|
|
|
if len(team_matches) == 0:
|
|
|
return 0.0
|
|
|
|
|
|
total_points = team_matches['result'].apply(get_points_from_result).sum()
|
|
|
ppp = total_points / len(team_matches)
|
|
|
|
|
|
return ppp
|
|
|
|
|
|
|
|
|
def get_ppp_difference(df, local, away, season, round_num, league=None):
|
|
|
"""
|
|
|
Calcula la diferencia de puntos por partido entre local y visitante
|
|
|
|
|
|
Args:
|
|
|
df: DataFrame completo
|
|
|
local: Equipo local
|
|
|
away: Equipo visitante
|
|
|
season: Temporada
|
|
|
round_num: Jornada actual
|
|
|
league: Código de liga (opcional)
|
|
|
|
|
|
Returns:
|
|
|
float: Diferencia de PPP (local - away)
|
|
|
"""
|
|
|
local_ppp = get_team_ppp(df, local, season, round_num, league)
|
|
|
away_ppp = get_team_ppp(df, away, season, round_num, league)
|
|
|
|
|
|
return local_ppp - away_ppp
|
|
|
|
|
|
def get_average(df, is_team=False, lst_avg=None):
|
|
|
"""Calcula promedios de estadísticas"""
|
|
|
|
|
|
if len(df) == 0:
|
|
|
|
|
|
if is_team:
|
|
|
return (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
|
|
|
return (0, 0, 0, 0, 0, 0, 0, 0)
|
|
|
|
|
|
if is_team:
|
|
|
|
|
|
|
|
|
|
|
|
avg_cross = (df['Performance_Crs'].sum() / len(df)) - lst_avg[3]
|
|
|
avg_att_3rd = (df['Touches_Att 3rd'].sum() / len(df)) - lst_avg[4]
|
|
|
avg_sca = (df['SCA Types_SCA'].sum() / len(df)) - lst_avg[2]
|
|
|
avg_xg = (df['Expected_xG'].sum() / len(df)) - lst_avg[1]
|
|
|
|
|
|
|
|
|
var_ck = df['Pass Types_CK'].var() if len(df) > 1 else 0
|
|
|
avg_ck = (df['Pass Types_CK'].sum() / len(df)) - lst_avg[8]
|
|
|
|
|
|
avg_poss = (df['Poss'].sum() / len(df)) - 50
|
|
|
avg_gf = (df['GF'].sum() / len(df)) - lst_avg[5]
|
|
|
avg_ga = (df['GA'].sum() / len(df)) - lst_avg[6]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
total_sh = df['Standard_Sh'].sum()
|
|
|
sh_accuracy = (df['Standard_SoT'].sum() / total_sh) if total_sh > 0 else 0
|
|
|
|
|
|
|
|
|
xg_shot = (df['Expected_xG'].sum() / total_sh) if total_sh > 0 else 0
|
|
|
|
|
|
|
|
|
total_touches = df['Touches_Touches'].sum()
|
|
|
attacking_presence = (df['Touches_Att 3rd'].sum() / total_touches) if total_touches > 0 else 0
|
|
|
|
|
|
|
|
|
total_poss = df['Poss'].sum()
|
|
|
possession_shot = (total_sh / total_poss) if total_poss > 0 else 0
|
|
|
|
|
|
|
|
|
standard_dist = df['Standard_Dist'].mean() if 'Standard_Dist' in df.columns else 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
total_passes = df['Total_Att'].sum()
|
|
|
progressive_pass_ratio = (df['PrgP'].sum() / total_passes) if total_passes > 0 else 0
|
|
|
|
|
|
|
|
|
final_third_passes = df['1/3'].sum()
|
|
|
final_third_involvement = (final_third_passes / total_passes) if total_passes > 0 else 0
|
|
|
|
|
|
|
|
|
long_ball_ratio = (df['Long_Att'].sum() / total_passes) if total_passes > 0 else 0
|
|
|
|
|
|
|
|
|
total_sca = df['SCA Types_SCA'].sum()
|
|
|
assist_sca = (df['Ast'].sum() / total_sca) if total_sca > 0 else 0
|
|
|
|
|
|
|
|
|
cross_dependency = (df['Performance_Crs'].sum() / total_passes) if total_passes > 0 else 0
|
|
|
|
|
|
|
|
|
creative_efficiency = (total_sca / total_poss) if total_poss > 0 else 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
total_tackles = df['Tackles_Tkl'].sum()
|
|
|
high_press_intensity = (df['Tackles_Att 3rd'].sum() / total_tackles) if total_tackles > 0 else 0
|
|
|
|
|
|
|
|
|
interception_tackle = (df['Int'].sum() / total_tackles) if total_tackles > 0 else 0
|
|
|
|
|
|
|
|
|
blocks_tackle = (df['Blocks_Blocks'].sum() / total_tackles) if total_tackles > 0 else 0
|
|
|
|
|
|
|
|
|
total_defensive_actions = total_tackles + df['Int'].sum()
|
|
|
clearance_ratio = (df['Clr'].sum() / total_defensive_actions) if total_defensive_actions > 0 else 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
avg_save_pct = df['Performance_Save%'].mean() if 'Performance_Save%' in df.columns else 0
|
|
|
avg_xg_against = df['Expected_xG'].mean() if len(df) > 0 else 1
|
|
|
performance_save = (avg_save_pct / (1 / avg_xg_against)) if avg_xg_against > 0 else 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
total_carries = df['Carries_Carries'].sum()
|
|
|
progressive_carry_ratio = (df['Carries_PrgC'].sum() / total_carries) if total_carries > 0 else 0
|
|
|
|
|
|
|
|
|
penalty_carry_ratio = (df['Carries_CPA'].sum() / total_carries) if total_carries > 0 else 0
|
|
|
|
|
|
|
|
|
total_prog_passes = df['PrgP'].sum()
|
|
|
carry_pass_balance = (df['Carries_PrgC'].sum() / total_prog_passes) if total_prog_passes > 0 else 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
avg_gf_raw = df['GF'].mean()
|
|
|
avg_xg_raw = df['Expected_xG'].mean()
|
|
|
avg_sot = df['Standard_SoT'].mean()
|
|
|
avg_sh = df['Standard_Sh'].mean()
|
|
|
offensive_index = (avg_gf_raw + avg_xg_raw) * (avg_sot / avg_sh) if avg_sh > 0 else 0
|
|
|
|
|
|
|
|
|
avg_int = df['Int'].mean()
|
|
|
avg_tkl = df['Tackles_Tkl'].mean()
|
|
|
avg_clr = df['Clr'].mean()
|
|
|
defensive_index = avg_save_pct * (avg_int / (avg_tkl + avg_clr)) if (avg_tkl + avg_clr) > 0 else 0
|
|
|
|
|
|
|
|
|
avg_touches_att = df['Touches_Att 3rd'].mean()
|
|
|
avg_carries_third = df['Carries_1/3'].mean() if 'Carries_1/3' in df.columns else 0
|
|
|
avg_touches_total = df['Touches_Touches'].mean()
|
|
|
possession_control_index = ((avg_touches_att + avg_carries_third) / avg_touches_total) if avg_touches_total > 0 else 0
|
|
|
|
|
|
|
|
|
avg_prgp = df['PrgP'].mean()
|
|
|
avg_prgc = df['Carries_PrgC'].mean()
|
|
|
avg_poss_raw = df['Poss'].mean()
|
|
|
transition_index = ((avg_prgp + avg_prgc) / avg_poss_raw) if avg_poss_raw > 0 else 0
|
|
|
|
|
|
|
|
|
return (
|
|
|
avg_ck,
|
|
|
var_ck,
|
|
|
avg_xg,
|
|
|
avg_sca,
|
|
|
avg_cross,
|
|
|
avg_poss,
|
|
|
avg_att_3rd,
|
|
|
avg_gf,
|
|
|
avg_ga,
|
|
|
sh_accuracy,
|
|
|
xg_shot,
|
|
|
attacking_presence,
|
|
|
possession_shot,
|
|
|
progressive_pass_ratio,
|
|
|
final_third_involvement,
|
|
|
assist_sca,
|
|
|
creative_efficiency,
|
|
|
high_press_intensity,
|
|
|
interception_tackle,
|
|
|
clearance_ratio,
|
|
|
progressive_carry_ratio,
|
|
|
carry_pass_balance,
|
|
|
offensive_index,
|
|
|
transition_index
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
avg_cross = df['Performance_Crs'].mean()
|
|
|
avg_att_3rd = df['Touches_Att 3rd'].mean()
|
|
|
avg_sca = df['SCA Types_SCA'].mean()
|
|
|
avg_xg = df['Expected_xG'].mean()
|
|
|
|
|
|
|
|
|
var_ck = df['Pass Types_CK'].var() if len(df) > 1 else 0
|
|
|
avg_ck = df['Pass Types_CK'].mean()
|
|
|
|
|
|
avg_gf = df['GF'].mean()
|
|
|
avg_ga = df['GA'].mean()
|
|
|
|
|
|
|
|
|
avg_sh = df['Standard_Sh'].mean() if 'Standard_Sh' in df.columns else 0
|
|
|
|
|
|
return (
|
|
|
|
|
|
var_ck,
|
|
|
avg_xg,
|
|
|
avg_sca,
|
|
|
avg_cross,
|
|
|
avg_att_3rd,
|
|
|
avg_gf,
|
|
|
avg_ga,
|
|
|
avg_sh,
|
|
|
avg_ck
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class PROCESS_DATA():
|
|
|
def __init__(self,use_one_hot_encoding):
|
|
|
|
|
|
self.USE_ONE_HOT_ENCODING = use_one_hot_encoding
|
|
|
|
|
|
self.init_variables()
|
|
|
|
|
|
self.load_clean_dataset()
|
|
|
|
|
|
self.process_all_matches()
|
|
|
|
|
|
self.clean_and_ouput_dataset()
|
|
|
|
|
|
|
|
|
|
|
|
def init_variables(self):
|
|
|
|
|
|
self.y = []
|
|
|
self.y_home = []
|
|
|
self.y_away = []
|
|
|
|
|
|
self.lst_data = []
|
|
|
|
|
|
self.lst_years = ["1819", "1920", "2021", "2122", "2223", "2324", "2425", "2526"]
|
|
|
|
|
|
|
|
|
self.lst_base_advanced = [
|
|
|
"avg_ck","var_ck",
|
|
|
"xg", "sca", "cross", "poss", "att_3rd", "gf", "ga",
|
|
|
"sh_accuracy", "xg_shot", "attacking_presence", "possession_shot",
|
|
|
"progressive_pass_ratio", "final_third_involvement", "assist_sca", "creative_efficiency",
|
|
|
"high_press_intensity", "interception_tackle", "clearance_ratio",
|
|
|
"progressive_carry_ratio", "carry_pass_balance", "offensive_index", "transition_index"
|
|
|
]
|
|
|
|
|
|
self.lst_base_original = [
|
|
|
"var_ck","xg", "sca", "cross", "poss", "att_3rd", "gf", "ga","avg_ck"
|
|
|
]
|
|
|
|
|
|
print("Variables inicializadas")
|
|
|
|
|
|
def load_clean_dataset(self, iqr_multiplier=4.5, by_league=True):
|
|
|
"""
|
|
|
Cargar dataset y eliminar outliers con IQR
|
|
|
|
|
|
Args:
|
|
|
iqr_multiplier: Multiplicador IQR (1.5 = estándar)
|
|
|
by_league: Si True, calcula IQR por liga (más preciso)
|
|
|
"""
|
|
|
|
|
|
|
|
|
self.df_dataset_historic = pd.read_csv("dataset/cleaned/dataset_cleaned.csv")
|
|
|
|
|
|
if os.path.exists(r"dataset/cleaned/dataset_cleaned_current_year.csv"):
|
|
|
self.df_dataset_current_year = pd.read_csv("dataset/cleaned/dataset_cleaned_current_year.csv")
|
|
|
self.df_dataset = pd.concat([self.df_dataset_historic, self.df_dataset_current_year])
|
|
|
else:
|
|
|
self.df_dataset = self.df_dataset_historic
|
|
|
|
|
|
self.df_dataset["season"] = self.df_dataset["season"].astype(str)
|
|
|
self.df_dataset["Performance_Save%"].fillna(0, inplace=True)
|
|
|
|
|
|
|
|
|
print(f"✅ Dataset cargado: {self.df_dataset.shape}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print(f"\n🧹 ELIMINANDO OUTLIERS (IQR × {iqr_multiplier})...")
|
|
|
if by_league:
|
|
|
print(" Método: IQR por liga (más preciso)")
|
|
|
else:
|
|
|
print(" Método: IQR global")
|
|
|
|
|
|
|
|
|
exclude_cols = ['date', 'season', 'league', 'team', 'opponent', 'venue',
|
|
|
'round', 'game', 'result', 'local', 'away']
|
|
|
|
|
|
numeric_cols = self.df_dataset.select_dtypes(include=['float64', 'int64']).columns.tolist()
|
|
|
numeric_cols = [col for col in numeric_cols if col not in exclude_cols]
|
|
|
|
|
|
print(f" Columnas numéricas: {len(numeric_cols)}")
|
|
|
|
|
|
filas_antes = len(self.df_dataset)
|
|
|
|
|
|
if by_league:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dfs_limpios = []
|
|
|
|
|
|
for league in self.df_dataset['league'].unique():
|
|
|
df_league = self.df_dataset[self.df_dataset['league'] == league].copy()
|
|
|
filas_liga_antes = len(df_league)
|
|
|
|
|
|
|
|
|
for col in numeric_cols:
|
|
|
Q1 = df_league[col].quantile(0.25)
|
|
|
Q3 = df_league[col].quantile(0.75)
|
|
|
IQR = Q3 - Q1
|
|
|
|
|
|
lower_bound = Q1 - iqr_multiplier * IQR
|
|
|
upper_bound = Q3 + iqr_multiplier * IQR
|
|
|
|
|
|
mask = (df_league[col] >= lower_bound) & (df_league[col] <= upper_bound)
|
|
|
df_league = df_league[mask]
|
|
|
|
|
|
filas_liga_despues = len(df_league)
|
|
|
eliminadas = filas_liga_antes - filas_liga_despues
|
|
|
|
|
|
print(f" {league}: {filas_liga_antes} → {filas_liga_despues} (-{eliminadas})")
|
|
|
|
|
|
dfs_limpios.append(df_league)
|
|
|
|
|
|
self.df_dataset = pd.concat(dfs_limpios, ignore_index=True)
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for col in numeric_cols:
|
|
|
Q1 = self.df_dataset[col].quantile(0.25)
|
|
|
Q3 = self.df_dataset[col].quantile(0.75)
|
|
|
IQR = Q3 - Q1
|
|
|
|
|
|
lower_bound = Q1 - iqr_multiplier * IQR
|
|
|
upper_bound = Q3 + iqr_multiplier * IQR
|
|
|
|
|
|
mask = (self.df_dataset[col] >= lower_bound) & (self.df_dataset[col] <= upper_bound)
|
|
|
self.df_dataset = self.df_dataset[mask]
|
|
|
|
|
|
filas_despues = len(self.df_dataset)
|
|
|
filas_eliminadas = filas_antes - filas_despues
|
|
|
porcentaje_eliminado = (filas_eliminadas / filas_antes) * 100
|
|
|
|
|
|
print(f"\n✅ RESUMEN:")
|
|
|
print(f" Filas antes: {filas_antes:,}")
|
|
|
print(f" Filas después: {filas_despues:,}")
|
|
|
print(f" Eliminadas: {filas_eliminadas:,} ({porcentaje_eliminado:.2f}%)")
|
|
|
print(f" Shape final: {self.df_dataset.shape}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.df_dataset_export = self.df_dataset.copy()
|
|
|
self.df_dataset_export = self.df_dataset_export.drop_duplicates(subset=["game", "league"])
|
|
|
self.df_dataset_export = self.df_dataset_export.sort_values(by='date', ascending=True)
|
|
|
print(self.df_dataset_export.head(10))
|
|
|
self.df_dataset_export = self.df_dataset_export[["local", "away", "round", "season", "date", "league"]]
|
|
|
|
|
|
self.lst_matches = self.df_dataset_export.values.tolist()
|
|
|
self.lst_matches = [row for row in self.lst_matches if row[3] != "1718"]
|
|
|
|
|
|
print(f"✅ Partidos a procesar: {len(self.lst_matches)}")
|
|
|
|
|
|
def process_all_matches(self):
|
|
|
|
|
|
for i in self.lst_matches:
|
|
|
if i[2] < 5:
|
|
|
continue
|
|
|
|
|
|
local = i[0]
|
|
|
away = i[1]
|
|
|
round_num = i[2]
|
|
|
season = i[3]
|
|
|
date = i[4]
|
|
|
league_code = i[5]
|
|
|
|
|
|
dic_df = {}
|
|
|
|
|
|
lst_avg = get_average(
|
|
|
self.df_dataset[
|
|
|
(self.df_dataset['season'] == season) &
|
|
|
(self.df_dataset['round'] < round_num) &
|
|
|
(self.df_dataset['league'] == league_code)
|
|
|
],
|
|
|
is_team=False
|
|
|
)
|
|
|
|
|
|
|
|
|
def create_line(df, is_form=True, is_team=False, use_advanced=True):
|
|
|
"""
|
|
|
Args:
|
|
|
df: DataFrame con datos del equipo
|
|
|
is_form: Si True, toma solo últimos 8 partidos
|
|
|
is_team: Si True, normaliza contra promedios de liga
|
|
|
use_advanced: Si True, incluye métricas avanzadas (23 valores)
|
|
|
Si False, solo métricas originales (8 valores)
|
|
|
"""
|
|
|
if is_form:
|
|
|
df = df[-6:]
|
|
|
|
|
|
if use_advanced:
|
|
|
|
|
|
return get_average(df, is_team, lst_avg)
|
|
|
else:
|
|
|
|
|
|
result = get_average(df, is_team, lst_avg)
|
|
|
return result[:9]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(team1_home, team1_away, team1_opp_home, team1_opp_away,
|
|
|
team2_home, team2_away, team2_opp_home, team2_opp_away) = get_dataframes(
|
|
|
self.df_dataset, season, round_num, local, away, league=league_code
|
|
|
)
|
|
|
|
|
|
|
|
|
ck = get_ck(self.df_dataset, season, round_num, local, away, league=league_code)
|
|
|
self.y.append(ck[0])
|
|
|
dic_df['y_home'] = (ck[1],)
|
|
|
dic_df['y_away'] = (ck[2],)
|
|
|
dic_df['gol_total'] = (ck[3],)
|
|
|
dic_df['gol_home'] = (ck[4],)
|
|
|
dic_df['gol_away'] = (ck[5],)
|
|
|
dic_df['eg_total'] = (ck[6],)
|
|
|
dic_df['eg_home'] = (ck[7],)
|
|
|
dic_df['eg_away'] = (ck[8],)
|
|
|
dic_df['st_total'] = (ck[9],)
|
|
|
dic_df['st_home'] = (ck[10],)
|
|
|
dic_df['st_away'] = (ck[11],)
|
|
|
|
|
|
|
|
|
index = self.lst_years.index(season)
|
|
|
result = self.lst_years[:index+1]
|
|
|
team1_h2h, team2_h2h = get_head_2_head(
|
|
|
self.df_dataset, local, away, seasons=result, league=league_code
|
|
|
)
|
|
|
|
|
|
|
|
|
local_ppp = get_team_ppp(self.df_dataset, local, season, round_num, league=league_code)
|
|
|
away_ppp = get_team_ppp(self.df_dataset, away, season, round_num, league=league_code)
|
|
|
ppp_diff = local_ppp - away_ppp
|
|
|
|
|
|
dic_df['ppp_local'] = (local_ppp,)
|
|
|
dic_df['ppp_away'] = (away_ppp,)
|
|
|
dic_df['ppp_difference'] = (ppp_diff,)
|
|
|
if i[2] < 15:
|
|
|
dic_df['round'] = (1,)
|
|
|
elif i[2] < 15 and i[2] > 25:
|
|
|
dic_df['round'] = (2,)
|
|
|
else:
|
|
|
dic_df['round'] = (3,)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dic_df['lst_team1_home_form'] = create_line(team1_home, True, True, use_advanced=True)
|
|
|
dic_df['lst_team1_home_general'] = create_line(team1_home, False, True, use_advanced=True)
|
|
|
dic_df['lst_team1_away_form'] = create_line(team1_away, True, True, use_advanced=True)
|
|
|
dic_df['lst_team1_away_general'] = create_line(team1_away, False, True, use_advanced=True)
|
|
|
|
|
|
dic_df['lst_team2_home_form'] = create_line(team2_home, True, True, use_advanced=True)
|
|
|
dic_df['lst_team2_home_general'] = create_line(team2_home, False, True, use_advanced=True)
|
|
|
dic_df['lst_team2_away_form'] = create_line(team2_away, True, True, use_advanced=True)
|
|
|
dic_df['lst_team2_away_general'] = create_line(team2_away, False, True, use_advanced=True)
|
|
|
|
|
|
dic_df['lst_team1_h2h'] = create_line(team1_h2h, False, True, use_advanced=True)
|
|
|
dic_df['lst_team2_h2h'] = create_line(team2_h2h, False, True, use_advanced=True)
|
|
|
|
|
|
|
|
|
dic_df['lst_team1_opp_away'] = create_line(team1_opp_away, False, True, use_advanced=False)
|
|
|
dic_df['lst_team2_opp_home'] = create_line(team2_opp_home, False, True, use_advanced=False)
|
|
|
|
|
|
|
|
|
if self.USE_ONE_HOT_ENCODING:
|
|
|
league_dummies = {
|
|
|
'league_ESP': 1 if league_code == 'ESP' else 0,
|
|
|
'league_GER': 1 if league_code == 'GER' else 0,
|
|
|
'league_FRA': 1 if league_code == 'FRA' else 0,
|
|
|
'league_ITA': 1 if league_code == 'ITA' else 0,
|
|
|
'league_NED': 1 if league_code == 'NED' else 0,
|
|
|
'league_ENG': 1 if league_code == 'ENG' else 0,
|
|
|
'league_POR': 1 if league_code == 'POR' else 0,
|
|
|
'league_BEL': 1 if league_code == 'BEL' else 0
|
|
|
}
|
|
|
|
|
|
for key, value in league_dummies.items():
|
|
|
dic_df[key] = (value,)
|
|
|
|
|
|
|
|
|
|
|
|
lst_features_values = []
|
|
|
self.lst_features_values = []
|
|
|
|
|
|
for key in dic_df:
|
|
|
lst_features_values.extend(list(dic_df[key]))
|
|
|
|
|
|
|
|
|
if key in ['ppp_local', 'ppp_away', 'ppp_difference','round','y_home','y_away',"gol_total","gol_home","gol_away","eg_total","eg_home","eg_away","st_total","st_home","st_away"]:
|
|
|
self.lst_features_values.append(key)
|
|
|
elif key.startswith('league_'):
|
|
|
self.lst_features_values.append(key)
|
|
|
elif key in ['lst_team1_opp_away', 'lst_team2_opp_home']:
|
|
|
|
|
|
self.lst_features_values.extend([f"{key}_{col}" for col in self.lst_base_original])
|
|
|
else:
|
|
|
|
|
|
self.lst_features_values.extend([f"{key}_{col}" for col in self.lst_base_advanced])
|
|
|
|
|
|
self.lst_data.append(lst_features_values)
|
|
|
print("Dataset processed")
|
|
|
|
|
|
def clean_and_ouput_dataset(self):
|
|
|
|
|
|
self.df_data = pd.DataFrame(data=self.lst_data, columns=self.lst_features_values)
|
|
|
|
|
|
|
|
|
|
|
|
print(f"\n✅ PROCESAMIENTO COMPLETADO:")
|
|
|
print(f" Shape inicial: {self.df_data.shape}")
|
|
|
print(f" Total partidos: {len(self.df_data)}")
|
|
|
print(f" Features totales: {self.df_data.shape[1]}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print(f"\n🧹 LIMPIANDO DATOS NULOS...")
|
|
|
|
|
|
import numpy as np
|
|
|
nulos_antes_X = self.df_data.isnull().sum().sum()
|
|
|
nulos_antes_y = np.isnan(self.y).sum() if isinstance(self.y, np.ndarray) else sum(pd.isna(self.y))
|
|
|
|
|
|
print(f" Nulos en X (antes): {nulos_antes_X}")
|
|
|
print(f" Nulos en Y (antes): {nulos_antes_y}")
|
|
|
|
|
|
y_array = np.array(self.y).flatten()
|
|
|
|
|
|
mask_valid_X = ~self.df_data.isnull().any(axis=1)
|
|
|
mask_valid_y = ~np.isnan(y_array)
|
|
|
mask_combined = mask_valid_X & mask_valid_y
|
|
|
|
|
|
self.df_data = self.df_data[mask_combined].reset_index(drop=True)
|
|
|
y_array = y_array[mask_combined]
|
|
|
|
|
|
print(f"\n✅ LIMPIEZA COMPLETADA:")
|
|
|
print(f" Nulos en X (después): {self.df_data.isnull().sum().sum()}")
|
|
|
print(f" Nulos en Y (después): {np.isnan(y_array).sum()}")
|
|
|
print(f" Filas eliminadas: {len(mask_combined) - mask_combined.sum()}")
|
|
|
print(f" Shape final: {self.df_data.shape}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print(f"\n🔍 VERIFICACIÓN DE NUEVAS FEATURES:")
|
|
|
print(f" ✅ Features con 'var_ck': {len([c for c in self.df_data.columns if 'var_ck' in c])}")
|
|
|
print(f" ✅ Features con métricas avanzadas: {len([c for c in self.df_data.columns if any(m in c for m in ['sh_accuracy', 'offensive_index'])])}")
|
|
|
print(f" ✅ Features de oponentes (8 valores): {len([c for c in self.df_data.columns if 'opp' in c])}")
|
|
|
|
|
|
print("\n" + "=" * 80)
|
|
|
print("✅ PROCESO COMPLETADO - DATOS LISTOS PARA ENTRENAMIENTO")
|
|
|
print("=" * 80)
|
|
|
|
|
|
self.y = y_array.tolist()
|
|
|
|
|
|
self.df_data["y"] = self.y
|
|
|
self.df_data.to_csv(r"dataset/processed/dataset_processed.csv",index=False)
|
|
|
print("Dataset")
|
|
|
|
|
|
|
|
|
|
|
|
|