danidanidani commited on
Commit
efeaf79
·
1 Parent(s): 5e35da7

Add README.md with Space configuration

Browse files
Files changed (2) hide show
  1. README.md +36 -0
  2. readme.md +0 -83
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: GRDN.AI.3
3
+ emoji: 🌱
4
+ colorFrom: green
5
+ colorTo: blue
6
+ sdk: streamlit
7
+ sdk_version: "1.23.1"
8
+ app_file: app.py
9
+ pinned: false
10
+ ---
11
+
12
+ # GRDN AI 🌱
13
+
14
+ AI and optimization powered companion gardening application.
15
+
16
+ ## Features
17
+ - 🤖 **GPU-Accelerated AI** - Llama 3.2-1B with Nvidia T4 support
18
+ - 🧬 **Genetic Algorithm** - Optimizes plant bed arrangements
19
+ - 📊 **Interactive Visualizations** - Network graphs of plant compatibility
20
+ - 🌿 **Companion Planting** - Maximize your garden's potential
21
+
22
+ ## How It Works
23
+ 1. Select your plants from the comprehensive plant database
24
+ 2. Configure your garden parameters (beds, species per bed)
25
+ 3. Generate compatibility matrices
26
+ 4. Run the genetic algorithm to optimize plant groupings
27
+ 5. Get AI-powered plant care tips
28
+
29
+ ## Tech Stack
30
+ - **Frontend**: Streamlit
31
+ - **AI Model**: Llama 3.2-1B (GGUF, quantized)
32
+ - **Optimization**: Custom genetic algorithm
33
+ - **Visualization**: Plotly, NetworkX, streamlit-agraph
34
+
35
+ Built with ❤️ for gardeners everywhere!
36
+
readme.md DELETED
@@ -1,83 +0,0 @@
1
- # README
2
- <br/>
3
- <br/>
4
- <font size = "18"> GRDN 🌱</font>
5
- <br/>
6
- author: Danielle Heymann
7
- <br/>
8
- contact: dheymann314@gmail.com
9
- <br/>
10
- last updated: 12/31/2023
11
- <br/>
12
- <br/>
13
- GRDN is an application that allows users to optimize a garden and its plant beds through companion planting, generative AI, and optimization. It is a work in progress. </font>
14
- <br/>
15
- <br/>
16
- Note: this is in beta and is in experimentation mode.
17
- <br/>
18
-
19
- ## Background
20
- info
21
- <br>
22
- <br>
23
- ![app1](src/assets/GRDN_screenshot1.png)
24
- <br>
25
- <br>
26
- ![app2](src/assets/GRDN_screenshot2.png)
27
- <br>
28
- <br>
29
- ![app3](src/assets/GRDN_screenshot3.png)
30
- <br>
31
- <br>
32
- ![app4](src/assets/GRDN_screenshot4.png)
33
- <br>
34
- <br>
35
- ![app5](src/assets/GRDN_screenshot5.png)
36
- <br>
37
- <br>
38
-
39
- ## Tech Stack
40
- ![app5](src/assets/GRDN_AI_techstack.png)
41
- <br>
42
- <br>
43
-
44
- ## Setup
45
- - setup conda environment
46
- >*conda create --name=GRDN_env*
47
- - install dependencies
48
- >*pip install -r requirements.txt*
49
- - download local models and add them to model folder
50
- >I used LLama2 7B HF Chat model and DeciLM 7B instruct model <br>
51
- >https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/blob/main/llama-2-7b-chat.Q4_K_M.gguf <br>
52
- >https://huggingface.co/Deci/DeciLM-7B-instruct-GGUF/tree/main <br>
53
-
54
- ## Running App
55
- - navigate to ...GRDN/src
56
- - activate environment
57
- >*conda activate GRDN_env*
58
- - run app
59
- >*python -m streamlit run app.py*
60
-
61
- ## Software, data, and libraries used
62
- ### Libraries and Software
63
- - Python
64
- - streamlit
65
- - openai
66
- - plotly
67
- - pandas
68
- - numpy
69
- - PIL
70
- - langchain
71
- - streamlit_chat
72
- - github copilot
73
- - Llama2
74
- - Deci AI
75
- - HuggingFace
76
- - LlamaIndex
77
- - chatGPT
78
- - GPT family of models
79
- - DALL·E 3 (in preprocessing script for image generation)
80
-
81
- ### Data sources in addition to what GPT was trained on: https://waldenlabs.com/the-ultimate-companion-planting-guide-chart/
82
- ### avatars from: https://www.flaticon.com/free-icons/bot
83
-