Spaces:
Runtime error
Runtime error
| import torch.nn as nn | |
| from annotator.uniformer.mmcv.cnn import (build_conv_layer, build_norm_layer, constant_init, | |
| kaiming_init) | |
| from annotator.uniformer.mmcv.runner import load_checkpoint | |
| from annotator.uniformer.mmcv.utils.parrots_wrapper import _BatchNorm | |
| from annotator.uniformer.mmseg.ops import Upsample, resize | |
| from annotator.uniformer.mmseg.utils import get_root_logger | |
| from ..builder import BACKBONES | |
| from .resnet import BasicBlock, Bottleneck | |
| class HRModule(nn.Module): | |
| """High-Resolution Module for HRNet. | |
| In this module, every branch has 4 BasicBlocks/Bottlenecks. Fusion/Exchange | |
| is in this module. | |
| """ | |
| def __init__(self, | |
| num_branches, | |
| blocks, | |
| num_blocks, | |
| in_channels, | |
| num_channels, | |
| multiscale_output=True, | |
| with_cp=False, | |
| conv_cfg=None, | |
| norm_cfg=dict(type='BN', requires_grad=True)): | |
| super(HRModule, self).__init__() | |
| self._check_branches(num_branches, num_blocks, in_channels, | |
| num_channels) | |
| self.in_channels = in_channels | |
| self.num_branches = num_branches | |
| self.multiscale_output = multiscale_output | |
| self.norm_cfg = norm_cfg | |
| self.conv_cfg = conv_cfg | |
| self.with_cp = with_cp | |
| self.branches = self._make_branches(num_branches, blocks, num_blocks, | |
| num_channels) | |
| self.fuse_layers = self._make_fuse_layers() | |
| self.relu = nn.ReLU(inplace=False) | |
| def _check_branches(self, num_branches, num_blocks, in_channels, | |
| num_channels): | |
| """Check branches configuration.""" | |
| if num_branches != len(num_blocks): | |
| error_msg = f'NUM_BRANCHES({num_branches}) <> NUM_BLOCKS(' \ | |
| f'{len(num_blocks)})' | |
| raise ValueError(error_msg) | |
| if num_branches != len(num_channels): | |
| error_msg = f'NUM_BRANCHES({num_branches}) <> NUM_CHANNELS(' \ | |
| f'{len(num_channels)})' | |
| raise ValueError(error_msg) | |
| if num_branches != len(in_channels): | |
| error_msg = f'NUM_BRANCHES({num_branches}) <> NUM_INCHANNELS(' \ | |
| f'{len(in_channels)})' | |
| raise ValueError(error_msg) | |
| def _make_one_branch(self, | |
| branch_index, | |
| block, | |
| num_blocks, | |
| num_channels, | |
| stride=1): | |
| """Build one branch.""" | |
| downsample = None | |
| if stride != 1 or \ | |
| self.in_channels[branch_index] != \ | |
| num_channels[branch_index] * block.expansion: | |
| downsample = nn.Sequential( | |
| build_conv_layer( | |
| self.conv_cfg, | |
| self.in_channels[branch_index], | |
| num_channels[branch_index] * block.expansion, | |
| kernel_size=1, | |
| stride=stride, | |
| bias=False), | |
| build_norm_layer(self.norm_cfg, num_channels[branch_index] * | |
| block.expansion)[1]) | |
| layers = [] | |
| layers.append( | |
| block( | |
| self.in_channels[branch_index], | |
| num_channels[branch_index], | |
| stride, | |
| downsample=downsample, | |
| with_cp=self.with_cp, | |
| norm_cfg=self.norm_cfg, | |
| conv_cfg=self.conv_cfg)) | |
| self.in_channels[branch_index] = \ | |
| num_channels[branch_index] * block.expansion | |
| for i in range(1, num_blocks[branch_index]): | |
| layers.append( | |
| block( | |
| self.in_channels[branch_index], | |
| num_channels[branch_index], | |
| with_cp=self.with_cp, | |
| norm_cfg=self.norm_cfg, | |
| conv_cfg=self.conv_cfg)) | |
| return nn.Sequential(*layers) | |
| def _make_branches(self, num_branches, block, num_blocks, num_channels): | |
| """Build multiple branch.""" | |
| branches = [] | |
| for i in range(num_branches): | |
| branches.append( | |
| self._make_one_branch(i, block, num_blocks, num_channels)) | |
| return nn.ModuleList(branches) | |
| def _make_fuse_layers(self): | |
| """Build fuse layer.""" | |
| if self.num_branches == 1: | |
| return None | |
| num_branches = self.num_branches | |
| in_channels = self.in_channels | |
| fuse_layers = [] | |
| num_out_branches = num_branches if self.multiscale_output else 1 | |
| for i in range(num_out_branches): | |
| fuse_layer = [] | |
| for j in range(num_branches): | |
| if j > i: | |
| fuse_layer.append( | |
| nn.Sequential( | |
| build_conv_layer( | |
| self.conv_cfg, | |
| in_channels[j], | |
| in_channels[i], | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| bias=False), | |
| build_norm_layer(self.norm_cfg, in_channels[i])[1], | |
| # we set align_corners=False for HRNet | |
| Upsample( | |
| scale_factor=2**(j - i), | |
| mode='bilinear', | |
| align_corners=False))) | |
| elif j == i: | |
| fuse_layer.append(None) | |
| else: | |
| conv_downsamples = [] | |
| for k in range(i - j): | |
| if k == i - j - 1: | |
| conv_downsamples.append( | |
| nn.Sequential( | |
| build_conv_layer( | |
| self.conv_cfg, | |
| in_channels[j], | |
| in_channels[i], | |
| kernel_size=3, | |
| stride=2, | |
| padding=1, | |
| bias=False), | |
| build_norm_layer(self.norm_cfg, | |
| in_channels[i])[1])) | |
| else: | |
| conv_downsamples.append( | |
| nn.Sequential( | |
| build_conv_layer( | |
| self.conv_cfg, | |
| in_channels[j], | |
| in_channels[j], | |
| kernel_size=3, | |
| stride=2, | |
| padding=1, | |
| bias=False), | |
| build_norm_layer(self.norm_cfg, | |
| in_channels[j])[1], | |
| nn.ReLU(inplace=False))) | |
| fuse_layer.append(nn.Sequential(*conv_downsamples)) | |
| fuse_layers.append(nn.ModuleList(fuse_layer)) | |
| return nn.ModuleList(fuse_layers) | |
| def forward(self, x): | |
| """Forward function.""" | |
| if self.num_branches == 1: | |
| return [self.branches[0](x[0])] | |
| for i in range(self.num_branches): | |
| x[i] = self.branches[i](x[i]) | |
| x_fuse = [] | |
| for i in range(len(self.fuse_layers)): | |
| y = 0 | |
| for j in range(self.num_branches): | |
| if i == j: | |
| y += x[j] | |
| elif j > i: | |
| y = y + resize( | |
| self.fuse_layers[i][j](x[j]), | |
| size=x[i].shape[2:], | |
| mode='bilinear', | |
| align_corners=False) | |
| else: | |
| y += self.fuse_layers[i][j](x[j]) | |
| x_fuse.append(self.relu(y)) | |
| return x_fuse | |
| class HRNet(nn.Module): | |
| """HRNet backbone. | |
| High-Resolution Representations for Labeling Pixels and Regions | |
| arXiv: https://arxiv.org/abs/1904.04514 | |
| Args: | |
| extra (dict): detailed configuration for each stage of HRNet. | |
| in_channels (int): Number of input image channels. Normally 3. | |
| conv_cfg (dict): dictionary to construct and config conv layer. | |
| norm_cfg (dict): dictionary to construct and config norm layer. | |
| norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
| freeze running stats (mean and var). Note: Effect on Batch Norm | |
| and its variants only. | |
| with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
| memory while slowing down the training speed. | |
| zero_init_residual (bool): whether to use zero init for last norm layer | |
| in resblocks to let them behave as identity. | |
| Example: | |
| >>> from annotator.uniformer.mmseg.models import HRNet | |
| >>> import torch | |
| >>> extra = dict( | |
| >>> stage1=dict( | |
| >>> num_modules=1, | |
| >>> num_branches=1, | |
| >>> block='BOTTLENECK', | |
| >>> num_blocks=(4, ), | |
| >>> num_channels=(64, )), | |
| >>> stage2=dict( | |
| >>> num_modules=1, | |
| >>> num_branches=2, | |
| >>> block='BASIC', | |
| >>> num_blocks=(4, 4), | |
| >>> num_channels=(32, 64)), | |
| >>> stage3=dict( | |
| >>> num_modules=4, | |
| >>> num_branches=3, | |
| >>> block='BASIC', | |
| >>> num_blocks=(4, 4, 4), | |
| >>> num_channels=(32, 64, 128)), | |
| >>> stage4=dict( | |
| >>> num_modules=3, | |
| >>> num_branches=4, | |
| >>> block='BASIC', | |
| >>> num_blocks=(4, 4, 4, 4), | |
| >>> num_channels=(32, 64, 128, 256))) | |
| >>> self = HRNet(extra, in_channels=1) | |
| >>> self.eval() | |
| >>> inputs = torch.rand(1, 1, 32, 32) | |
| >>> level_outputs = self.forward(inputs) | |
| >>> for level_out in level_outputs: | |
| ... print(tuple(level_out.shape)) | |
| (1, 32, 8, 8) | |
| (1, 64, 4, 4) | |
| (1, 128, 2, 2) | |
| (1, 256, 1, 1) | |
| """ | |
| blocks_dict = {'BASIC': BasicBlock, 'BOTTLENECK': Bottleneck} | |
| def __init__(self, | |
| extra, | |
| in_channels=3, | |
| conv_cfg=None, | |
| norm_cfg=dict(type='BN', requires_grad=True), | |
| norm_eval=False, | |
| with_cp=False, | |
| zero_init_residual=False): | |
| super(HRNet, self).__init__() | |
| self.extra = extra | |
| self.conv_cfg = conv_cfg | |
| self.norm_cfg = norm_cfg | |
| self.norm_eval = norm_eval | |
| self.with_cp = with_cp | |
| self.zero_init_residual = zero_init_residual | |
| # stem net | |
| self.norm1_name, norm1 = build_norm_layer(self.norm_cfg, 64, postfix=1) | |
| self.norm2_name, norm2 = build_norm_layer(self.norm_cfg, 64, postfix=2) | |
| self.conv1 = build_conv_layer( | |
| self.conv_cfg, | |
| in_channels, | |
| 64, | |
| kernel_size=3, | |
| stride=2, | |
| padding=1, | |
| bias=False) | |
| self.add_module(self.norm1_name, norm1) | |
| self.conv2 = build_conv_layer( | |
| self.conv_cfg, | |
| 64, | |
| 64, | |
| kernel_size=3, | |
| stride=2, | |
| padding=1, | |
| bias=False) | |
| self.add_module(self.norm2_name, norm2) | |
| self.relu = nn.ReLU(inplace=True) | |
| # stage 1 | |
| self.stage1_cfg = self.extra['stage1'] | |
| num_channels = self.stage1_cfg['num_channels'][0] | |
| block_type = self.stage1_cfg['block'] | |
| num_blocks = self.stage1_cfg['num_blocks'][0] | |
| block = self.blocks_dict[block_type] | |
| stage1_out_channels = num_channels * block.expansion | |
| self.layer1 = self._make_layer(block, 64, num_channels, num_blocks) | |
| # stage 2 | |
| self.stage2_cfg = self.extra['stage2'] | |
| num_channels = self.stage2_cfg['num_channels'] | |
| block_type = self.stage2_cfg['block'] | |
| block = self.blocks_dict[block_type] | |
| num_channels = [channel * block.expansion for channel in num_channels] | |
| self.transition1 = self._make_transition_layer([stage1_out_channels], | |
| num_channels) | |
| self.stage2, pre_stage_channels = self._make_stage( | |
| self.stage2_cfg, num_channels) | |
| # stage 3 | |
| self.stage3_cfg = self.extra['stage3'] | |
| num_channels = self.stage3_cfg['num_channels'] | |
| block_type = self.stage3_cfg['block'] | |
| block = self.blocks_dict[block_type] | |
| num_channels = [channel * block.expansion for channel in num_channels] | |
| self.transition2 = self._make_transition_layer(pre_stage_channels, | |
| num_channels) | |
| self.stage3, pre_stage_channels = self._make_stage( | |
| self.stage3_cfg, num_channels) | |
| # stage 4 | |
| self.stage4_cfg = self.extra['stage4'] | |
| num_channels = self.stage4_cfg['num_channels'] | |
| block_type = self.stage4_cfg['block'] | |
| block = self.blocks_dict[block_type] | |
| num_channels = [channel * block.expansion for channel in num_channels] | |
| self.transition3 = self._make_transition_layer(pre_stage_channels, | |
| num_channels) | |
| self.stage4, pre_stage_channels = self._make_stage( | |
| self.stage4_cfg, num_channels) | |
| def norm1(self): | |
| """nn.Module: the normalization layer named "norm1" """ | |
| return getattr(self, self.norm1_name) | |
| def norm2(self): | |
| """nn.Module: the normalization layer named "norm2" """ | |
| return getattr(self, self.norm2_name) | |
| def _make_transition_layer(self, num_channels_pre_layer, | |
| num_channels_cur_layer): | |
| """Make transition layer.""" | |
| num_branches_cur = len(num_channels_cur_layer) | |
| num_branches_pre = len(num_channels_pre_layer) | |
| transition_layers = [] | |
| for i in range(num_branches_cur): | |
| if i < num_branches_pre: | |
| if num_channels_cur_layer[i] != num_channels_pre_layer[i]: | |
| transition_layers.append( | |
| nn.Sequential( | |
| build_conv_layer( | |
| self.conv_cfg, | |
| num_channels_pre_layer[i], | |
| num_channels_cur_layer[i], | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| bias=False), | |
| build_norm_layer(self.norm_cfg, | |
| num_channels_cur_layer[i])[1], | |
| nn.ReLU(inplace=True))) | |
| else: | |
| transition_layers.append(None) | |
| else: | |
| conv_downsamples = [] | |
| for j in range(i + 1 - num_branches_pre): | |
| in_channels = num_channels_pre_layer[-1] | |
| out_channels = num_channels_cur_layer[i] \ | |
| if j == i - num_branches_pre else in_channels | |
| conv_downsamples.append( | |
| nn.Sequential( | |
| build_conv_layer( | |
| self.conv_cfg, | |
| in_channels, | |
| out_channels, | |
| kernel_size=3, | |
| stride=2, | |
| padding=1, | |
| bias=False), | |
| build_norm_layer(self.norm_cfg, out_channels)[1], | |
| nn.ReLU(inplace=True))) | |
| transition_layers.append(nn.Sequential(*conv_downsamples)) | |
| return nn.ModuleList(transition_layers) | |
| def _make_layer(self, block, inplanes, planes, blocks, stride=1): | |
| """Make each layer.""" | |
| downsample = None | |
| if stride != 1 or inplanes != planes * block.expansion: | |
| downsample = nn.Sequential( | |
| build_conv_layer( | |
| self.conv_cfg, | |
| inplanes, | |
| planes * block.expansion, | |
| kernel_size=1, | |
| stride=stride, | |
| bias=False), | |
| build_norm_layer(self.norm_cfg, planes * block.expansion)[1]) | |
| layers = [] | |
| layers.append( | |
| block( | |
| inplanes, | |
| planes, | |
| stride, | |
| downsample=downsample, | |
| with_cp=self.with_cp, | |
| norm_cfg=self.norm_cfg, | |
| conv_cfg=self.conv_cfg)) | |
| inplanes = planes * block.expansion | |
| for i in range(1, blocks): | |
| layers.append( | |
| block( | |
| inplanes, | |
| planes, | |
| with_cp=self.with_cp, | |
| norm_cfg=self.norm_cfg, | |
| conv_cfg=self.conv_cfg)) | |
| return nn.Sequential(*layers) | |
| def _make_stage(self, layer_config, in_channels, multiscale_output=True): | |
| """Make each stage.""" | |
| num_modules = layer_config['num_modules'] | |
| num_branches = layer_config['num_branches'] | |
| num_blocks = layer_config['num_blocks'] | |
| num_channels = layer_config['num_channels'] | |
| block = self.blocks_dict[layer_config['block']] | |
| hr_modules = [] | |
| for i in range(num_modules): | |
| # multi_scale_output is only used for the last module | |
| if not multiscale_output and i == num_modules - 1: | |
| reset_multiscale_output = False | |
| else: | |
| reset_multiscale_output = True | |
| hr_modules.append( | |
| HRModule( | |
| num_branches, | |
| block, | |
| num_blocks, | |
| in_channels, | |
| num_channels, | |
| reset_multiscale_output, | |
| with_cp=self.with_cp, | |
| norm_cfg=self.norm_cfg, | |
| conv_cfg=self.conv_cfg)) | |
| return nn.Sequential(*hr_modules), in_channels | |
| def init_weights(self, pretrained=None): | |
| """Initialize the weights in backbone. | |
| Args: | |
| pretrained (str, optional): Path to pre-trained weights. | |
| Defaults to None. | |
| """ | |
| if isinstance(pretrained, str): | |
| logger = get_root_logger() | |
| load_checkpoint(self, pretrained, strict=False, logger=logger) | |
| elif pretrained is None: | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| kaiming_init(m) | |
| elif isinstance(m, (_BatchNorm, nn.GroupNorm)): | |
| constant_init(m, 1) | |
| if self.zero_init_residual: | |
| for m in self.modules(): | |
| if isinstance(m, Bottleneck): | |
| constant_init(m.norm3, 0) | |
| elif isinstance(m, BasicBlock): | |
| constant_init(m.norm2, 0) | |
| else: | |
| raise TypeError('pretrained must be a str or None') | |
| def forward(self, x): | |
| """Forward function.""" | |
| x = self.conv1(x) | |
| x = self.norm1(x) | |
| x = self.relu(x) | |
| x = self.conv2(x) | |
| x = self.norm2(x) | |
| x = self.relu(x) | |
| x = self.layer1(x) | |
| x_list = [] | |
| for i in range(self.stage2_cfg['num_branches']): | |
| if self.transition1[i] is not None: | |
| x_list.append(self.transition1[i](x)) | |
| else: | |
| x_list.append(x) | |
| y_list = self.stage2(x_list) | |
| x_list = [] | |
| for i in range(self.stage3_cfg['num_branches']): | |
| if self.transition2[i] is not None: | |
| x_list.append(self.transition2[i](y_list[-1])) | |
| else: | |
| x_list.append(y_list[i]) | |
| y_list = self.stage3(x_list) | |
| x_list = [] | |
| for i in range(self.stage4_cfg['num_branches']): | |
| if self.transition3[i] is not None: | |
| x_list.append(self.transition3[i](y_list[-1])) | |
| else: | |
| x_list.append(y_list[i]) | |
| y_list = self.stage4(x_list) | |
| return y_list | |
| def train(self, mode=True): | |
| """Convert the model into training mode will keeping the normalization | |
| layer freezed.""" | |
| super(HRNet, self).train(mode) | |
| if mode and self.norm_eval: | |
| for m in self.modules(): | |
| # trick: eval have effect on BatchNorm only | |
| if isinstance(m, _BatchNorm): | |
| m.eval() | |