Spaces:
Sleeping
Sleeping
import json | |
import numpy as np | |
import torch | |
from huggan.pytorch.lightweight_gan.lightweight_gan import LightweightGAN | |
from huggingface_hub import hf_hub_download | |
CONFIG_NAME = "config.json" | |
revision = None | |
cache_dir = None | |
force_download = False | |
proxies = None | |
resume_download = False | |
local_files_only = False | |
token = None | |
def load_model(model_name="ceyda/butterfly_cropped_uniq1K_512"): | |
""" | |
Loads a pre-trained LightweightGAN model from Hugging Face Model Hub. | |
Args: | |
model_name (str): The name of the pre-trained model to load. Defaults to "ceyda/butterfly_cropped_uniq1K_512". | |
model_version (str): The version of the pre-trained model to load. Defaults to None. | |
Returns: | |
LightweightGAN: The loaded pre-trained model. | |
""" | |
# Load the config | |
config_file = hf_hub_download( | |
repo_id=str(model_name), | |
filename=CONFIG_NAME, | |
revision=revision, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
resume_download=resume_download, | |
token=token, | |
local_files_only=local_files_only, | |
) | |
with open(config_file, "r", encoding="utf-8") as f: | |
config = json.load(f) | |
# Call the _from_pretrained with all the needed arguments | |
gan = LightweightGAN(latent_dim=256, image_size=512) | |
gan = gan._from_pretrained( | |
model_id=str(model_name), | |
revision=revision, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
resume_download=resume_download, | |
local_files_only=local_files_only, | |
token=token, | |
use_auth_token=False, | |
config=config, # usually in **model_kwargs | |
) | |
gan.eval() | |
return gan | |
def generate(gan, batch_size=1): | |
""" | |
Generates images using the given GAN model. | |
Args: | |
gan (nn.Module): The GAN model to use for generating images. | |
batch_size (int, optional): The number of images to generate in each batch. Defaults to 1. | |
Returns: | |
numpy.ndarray: A numpy array of generated images. | |
""" | |
with torch.no_grad(): | |
ims = gan.G(torch.randn(batch_size, gan.latent_dim)).clamp_(0.0, 1.0) * 255 | |
ims = ims.permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8) | |
return ims | |