Spaces:
Runtime error
Runtime error
import torch | |
import psutil | |
import argparse | |
import os | |
from diffusers import FlowMatchEulerDiscreteScheduler | |
from diffusers.utils import load_image | |
from transformers import AutoTokenizer, Wav2Vec2Model, Wav2Vec2Processor | |
from omegaconf import OmegaConf | |
from wan.models.cache_utils import get_teacache_coefficients | |
from wan.models.wan_fantasy_transformer3d_1B import WanTransformer3DFantasyModel | |
from wan.models.wan_text_encoder import WanT5EncoderModel | |
from wan.models.wan_vae import AutoencoderKLWan | |
from wan.models.wan_image_encoder import CLIPModel | |
from wan.pipeline.wan_inference_long_pipeline import WanI2VTalkingInferenceLongPipeline | |
from wan.utils.fp8_optimization import replace_parameters_by_name, convert_weight_dtype_wrapper, convert_model_weight_to_float8 | |
from wan.utils.utils import get_image_to_video_latent, save_videos_grid | |
import numpy as np | |
import librosa | |
import datetime | |
import random | |
import math | |
import subprocess | |
from huggingface_hub import snapshot_download | |
import requests | |
import shutil | |
# --- 全域設定 --- | |
if torch.cuda.is_available(): | |
device = "cuda" | |
if torch.cuda.get_device_capability()[0] >= 8: | |
dtype = torch.bfloat16 | |
else: | |
dtype = torch.float16 | |
else: | |
device = "cpu" | |
dtype = torch.float32 | |
def filter_kwargs(cls, kwargs): | |
"""過濾掉不屬於類別建構函式的關鍵字參數""" | |
import inspect | |
sig = inspect.signature(cls.__init__) | |
valid_params = set(sig.parameters.keys()) - {'self', 'cls'} | |
filtered_kwargs = {k: v for k, v in kwargs.items() if k in valid_params} | |
return filtered_kwargs | |
def download_file(url, local_path): | |
"""從 URL 下載檔案,如果 URL 是本地路徑則直接返回""" | |
if url.startswith(('http://', 'https://')): | |
print(f"從 {url} 下載檔案中...") | |
try: | |
with requests.get(url, stream=True) as r: | |
r.raise_for_status() | |
with open(local_path, 'wb') as f: | |
for chunk in r.iter_content(chunk_size=8192): | |
f.write(chunk) | |
print(f"檔案已儲存至 {local_path}") | |
return local_path | |
except requests.exceptions.RequestException as e: | |
print(f"錯誤:無法下載檔案 {url}。 {e}") | |
return None | |
elif os.path.exists(url): | |
print(f"使用本地檔案: {url}") | |
return url | |
else: | |
print(f"錯誤:檔案或 URL 不存在: {url}") | |
return None | |
def setup_models(repo_root, model_version): | |
"""載入所有必要的模型和設定""" | |
pretrained_model_name_or_path = os.path.join(repo_root, "Wan2.1-Fun-V1.1-1.3B-InP") | |
pretrained_wav2vec_path = os.path.join(repo_root, "wav2vec2-base-960h") | |
config_path = os.path.join(repo_root, "deepspeed_config/wan2.1/wan_civitai.yaml") | |
if not os.path.exists(config_path): | |
raise FileNotFoundError(f"設定檔未找到: {config_path}") | |
config = OmegaConf.load(config_path) | |
sampler_name = "Flow" | |
print("正在載入 Tokenizer...") | |
tokenizer = AutoTokenizer.from_pretrained(os.path.join(pretrained_model_name_or_path, config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer'))) | |
print("正在載入 Text Encoder...") | |
text_encoder = WanT5EncoderModel.from_pretrained( | |
os.path.join(pretrained_model_name_or_path, config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder')), | |
additional_kwargs=OmegaConf.to_container(config['text_encoder_kwargs']), | |
low_cpu_mem_usage=True, | |
torch_dtype=dtype, | |
).eval() | |
print("正在載入 VAE...") | |
vae = AutoencoderKLWan.from_pretrained( | |
os.path.join(pretrained_model_name_or_path, config['vae_kwargs'].get('vae_subpath', 'vae')), | |
additional_kwargs=OmegaConf.to_container(config['vae_kwargs']), | |
) | |
print("正在載入 Wav2Vec...") | |
wav2vec_processor = Wav2Vec2Processor.from_pretrained(pretrained_wav2vec_path) | |
wav2vec = Wav2Vec2Model.from_pretrained(pretrained_wav2vec_path).to("cpu") | |
print("正在載入 CLIP Image Encoder...") | |
clip_image_encoder = CLIPModel.from_pretrained(os.path.join(pretrained_model_name_or_path, config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder'))).eval() | |
print("正在載入 Transformer 3D 基礎模型...") | |
transformer3d = WanTransformer3DFantasyModel.from_pretrained( | |
os.path.join(pretrained_model_name_or_path, config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer')), | |
transformer_additional_kwargs=OmegaConf.to_container(config['transformer_additional_kwargs']), | |
low_cpu_mem_usage=False, | |
torch_dtype=dtype, | |
) | |
# <<< FIX 1: 載入 StableAvatar 專用權重 >>> | |
if model_version == "square": | |
transformer_path = os.path.join(repo_root, "StableAvatar-1.3B", "transformer3d-square.pt") | |
else: # rec_vec | |
transformer_path = os.path.join(repo_root, "StableAvatar-1.3B", "transformer3d-rec-vec.pt") | |
if os.path.exists(transformer_path): | |
print(f"正在從 {transformer_path} 載入 StableAvatar 權重...") | |
state_dict = torch.load(transformer_path, map_location="cpu") | |
state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict | |
m, u = transformer3d.load_state_dict(state_dict, strict=False) | |
print(f"StableAvatar 權重載入成功。 Missing keys: {len(m)}; Unexpected keys: {len(u)}") | |
else: | |
raise FileNotFoundError(f"找不到 StableAvatar 權重檔案:{transformer_path}。請確保模型已完整下載。") | |
# <<< END OF FIX 1 >>> | |
scheduler_class = { "Flow": FlowMatchEulerDiscreteScheduler }[sampler_name] | |
scheduler = scheduler_class(**filter_kwargs(scheduler_class, OmegaConf.to_container(config['scheduler_kwargs']))) | |
print("正在建立 Pipeline...") | |
pipeline = WanI2VTalkingInferenceLongPipeline( | |
tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, | |
transformer=transformer3d, clip_image_encoder=clip_image_encoder, | |
scheduler=scheduler, wav2vec_processor=wav2vec_processor, wav2vec=wav2vec, | |
) | |
return pipeline, transformer3d, vae | |
def run_inference( | |
pipeline, transformer3d, vae, image_path, audio_path, prompt, | |
negative_prompt, seed, output_filename, gpu_memory_mode="model_cpu_offload", | |
width=512, height=512, num_inference_steps=50, fps=25, **kwargs | |
): | |
"""執行推理以生成影片。""" | |
if seed < 0: | |
seed = random.randint(0, np.iinfo(np.int32).max) | |
print(f"使用的種子: {seed}") | |
if gpu_memory_mode == "sequential_cpu_offload": | |
pipeline.enable_sequential_cpu_offload(device=device) | |
elif gpu_memory_mode == "model_cpu_offload": | |
pipeline.enable_model_cpu_offload(device=device) | |
else: | |
pipeline.to(device=device) | |
with torch.no_grad(): | |
print("正在準備輸入資料...") | |
# 由於 get_image_to_video_latent 內部有自己的 vae.config 引用,所以此處警告可忽略 | |
video_length = 81 | |
input_video, input_video_mask, clip_image = get_image_to_video_latent(image_path, None, video_length=video_length, sample_size=[height, width]) | |
sr = 16000 | |
vocal_input, _ = librosa.load(audio_path, sr=sr) | |
print("Pipeline 執行中... 這可能需要一些時間。") | |
sample = pipeline( | |
prompt, num_frames=video_length, negative_prompt=negative_prompt, | |
width=width, height=height, guidance_scale=6.0, | |
generator=torch.Generator().manual_seed(seed), num_inference_steps=num_inference_steps, | |
video=input_video, mask_video=input_video_mask, clip_image=clip_image, | |
text_guide_scale=3.0, audio_guide_scale=5.0, vocal_input_values=vocal_input, | |
motion_frame=25, fps=fps, sr=sr, cond_file_path=image_path, | |
overlap_window_length=10, seed=seed, overlapping_weight_scheme="uniform", | |
).videos | |
print("正在儲存影片...") | |
os.makedirs("outputs", exist_ok=True) | |
video_path = os.path.join("outputs", f"{output_filename}.mp4") | |
save_videos_grid(sample, video_path, fps=fps) | |
output_video_with_audio = os.path.join("outputs", f"{output_filename}_audio.mp4") | |
print("正在將音訊合併到影片中...") | |
subprocess.run([ | |
"ffmpeg", "-y", "-loglevel", "quiet", "-i", video_path, "-i", audio_path, | |
"-c:v", "copy", "-c:a", "aac", "-strict", "experimental", | |
output_video_with_audio | |
], check=True) | |
os.remove(video_path) | |
print(f"✅ 生成完成!影片已儲存至: {output_video_with_audio}") | |
return output_video_with_audio, seed | |
def main(): | |
parser = argparse.ArgumentParser(description="StableAvatar 命令列推理工具") | |
parser.add_argument('--prompt', type=str, default="a beautiful woman is talking, masterpiece, best quality", help='正面提示詞') | |
parser.add_argument('--input_image', type=str, default="example_case/case-6/reference.png", help='輸入圖片的路徑或 URL') | |
parser.add_argument('--input_audio', type=str, default="example_case/case-6/audio.wav", help='輸入音訊的路徑或 URL') | |
parser.add_argument('--seed', type=int, default=42, help='隨機種子,-1 表示隨機') | |
parser.add_argument('--negative_prompt', type=str, default="vivid color, static, blur details, text, style, painting, picture, still, gray, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, malformed, deformed, bad anatomy, fused fingers, still image, messy background, many people in the background, walking backwards", help='負面提示詞') | |
parser.add_argument('--width', type=int, default=512, help='影片寬度') | |
parser.add_argument('--height', type=int, default=512, help='影片高度') | |
parser.add_argument('--num_inference_steps', type=int, default=50, help='推理步數') | |
parser.add_argument('--fps', type=int, default=25, help='影片幀率') | |
parser.add_argument('--gpu_memory_mode', type=str, default="model_cpu_offload", choices=["Normal", "model_cpu_offload"], help='GPU 記憶體優化模式') | |
parser.add_argument('--model_version', type=str, default="square", choices=["square", "rec_vec"], help='StableAvatar 模型版本') | |
args = parser.parse_args() | |
print("--- 步驟 1: 正在檢查並下載模型 ---") | |
repo_root = snapshot_download( | |
repo_id="FrancisRing/StableAvatar", | |
allow_patterns=["StableAvatar-1.3B/*", "Wan2.1-Fun-V1.1-1.3B-InP/*", "wav2vec2-base-960h/*", "example_case/**", "deepspeed_config/**"], | |
) | |
print("模型檔案已準備就緒。") | |
print("\n--- 步驟 2: 正在處理輸入檔案 ---") | |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") | |
temp_dir = f"temp_{timestamp}" | |
os.makedirs(temp_dir, exist_ok=True) | |
# <<< FIX 2: 穩健的路徑處理 >>> | |
# 處理圖片路徑 | |
input_image_path = args.input_image | |
# 如果不是 URL 且不是絕對路徑,就視為相對於 repo_root 的路徑 | |
if not input_image_path.startswith(('http', '/')): | |
input_image_path = os.path.join(repo_root, input_image_path) | |
local_image_path = os.path.join(temp_dir, os.path.basename(input_image_path)) | |
final_image_path = download_file(input_image_path, local_image_path) | |
if not final_image_path: | |
shutil.rmtree(temp_dir); return | |
# 處理音訊路徑 | |
input_audio_path = args.input_audio | |
if not input_audio_path.startswith(('http', '/')): | |
input_audio_path = os.path.join(repo_root, input_audio_path) | |
local_audio_path = os.path.join(temp_dir, os.path.basename(input_audio_path)) | |
final_audio_path = download_file(input_audio_path, local_audio_path) | |
if not final_audio_path: | |
shutil.rmtree(temp_dir); return | |
# <<< END OF FIX 2 >>> | |
print("\n--- 步驟 3: 正在載入模型 ---") | |
pipeline, transformer3d, vae = setup_models(repo_root, args.model_version) | |
print("模型載入完成。") | |
print("\n--- 步驟 4: 開始執行推理 ---") | |
run_inference( | |
pipeline=pipeline, transformer3d=transformer3d, vae=vae, | |
image_path=final_image_path, audio_path=final_audio_path, | |
prompt=args.prompt, negative_prompt=args.negative_prompt, | |
seed=args.seed, output_filename=f"output_{timestamp}", | |
gpu_memory_mode=args.gpu_memory_mode, width=args.width, | |
height=args.height, num_inference_steps=args.num_inference_steps, | |
fps=args.fps | |
) | |
print("\n--- 步驟 5: 清理暫存檔案 ---") | |
try: | |
shutil.rmtree(temp_dir) | |
print("暫存檔案已刪除。") | |
except OSError as e: | |
print(f"錯誤:無法刪除暫存目錄 {temp_dir}: {e}") | |
if __name__ == "__main__": | |
main() | |