Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
import datetime | |
import __init__ | |
MODEL_NAME = __init__.MODEL_MICROSOFT_DIABLO_MEDIUM | |
OUTPUT_MAX_LENGTH = __init__.OUTPUT_MAX_LENGTH | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) | |
def print_f(session_id, text): | |
print(f"{datetime.datetime.now()} | {session_id} | {text}") | |
def predict(input, history, request: gr.Request): | |
session_id = 'UNKNOWN' | |
if request: | |
# Get session_id is client_ip + client_port | |
session_id = request.client.host + ':' + str(request.client.port) | |
# print_f(session_id, f" inp: {input}") | |
# Tokenize the new input sentence | |
new_user_input_ids = tokenizer.encode( | |
input + tokenizer.eos_token, return_tensors='pt') | |
# Append the new user input tokens to the chat history | |
bot_input_ids = torch.cat( | |
[torch.LongTensor(history), new_user_input_ids], dim=-1) | |
# Generate a response | |
history = model.generate(bot_input_ids, max_length=OUTPUT_MAX_LENGTH, | |
pad_token_id=tokenizer.eos_token_id).tolist() | |
# Convert the tokens to text, and then split the responses into lines | |
response = tokenizer.decode(history[0]).split("<|endoftext|>") | |
# Convert to tuples of list | |
response = [(response[i], response[i + 1]) | |
for i in range(0, len(response) - 1, 2)] | |
# Print new conversation | |
print_f(session_id, response[-1]) | |
return response, history | |
css = """ | |
#row_bot{width: 70%; height: var(--size-96); margin: 0 auto} | |
#row_bot .block{background: var(--color-grey-100); height: 100%} | |
#row_input{width: 70%; margin: 0 auto} | |
#row_input .block{background: var(--color-grey-100)} | |
@media screen and (max-width: 768px) { | |
#row_bot{width: 100%; height: var(--size-96); margin: 0 auto} | |
#row_bot .block{background: var(--color-grey-100); height: 100%} | |
#row_input{width: 100%; margin: 0 auto} | |
#row_input .block{background: var(--color-grey-100)} | |
} | |
""" | |
block = gr.Blocks(css=css, title="Chatbot") | |
with block: | |
gr.Markdown(f""" | |
<p style="font-size:20px; text-align: center">{MODEL_NAME}</p> | |
""") | |
with gr.Row(elem_id='row_bot'): | |
chatbot = gr.Chatbot() | |
with gr.Row(elem_id='row_input'): | |
message = gr.Textbox(placeholder="Enter something") | |
state = gr.State([]) | |
message.submit(predict, | |
inputs=[message, state], | |
outputs=[chatbot, state]) | |
message.submit(lambda x: "", message, message) | |
# Params ex: debug=True, share=True, server_name="0.0.0.0", server_port=5050 | |
block.launch() | |