Upload 2 files
Browse files- app.py +39 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from transformers import pipeline
|
7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
8 |
+
|
9 |
+
|
10 |
+
st.title('Marcel Proust')
|
11 |
+
st.subheader("Commencez la phrase, l'algorithme la termine.")
|
12 |
+
st.write("Note : la génération du texte prend ~ 5 minutes")
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
with st.form("my_form"):
|
18 |
+
|
19 |
+
text = st.text_input("Début de la phrase :", 'Je me souvenais de ce jour où Jean-Michel')
|
20 |
+
|
21 |
+
# Every form must have a submit button.
|
22 |
+
submitted = st.form_submit_button("Générer la suite")
|
23 |
+
|
24 |
+
# Load the model ---
|
25 |
+
model_checkpoint = "bigscience/bloom-560m"
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
27 |
+
model = AutoModelForCausalLM.from_pretrained("dan-vdb/ProustAI")
|
28 |
+
device = torch.device("cpu")
|
29 |
+
|
30 |
+
# device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
31 |
+
|
32 |
+
pipe = pipeline(
|
33 |
+
"text-generation", model=model, tokenizer=tokenizer, device=device
|
34 |
+
)
|
35 |
+
# ---
|
36 |
+
|
37 |
+
|
38 |
+
if submitted:
|
39 |
+
st.write(pipe(text, num_return_sequences=1, max_length=100)[0]["generated_text"])
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy==1.24.0
|
2 |
+
pandas==1.5.2
|
3 |
+
streamlit==1.16.0
|
4 |
+
torch==1.12.1
|
5 |
+
transformers==4.24.0
|