vits-simple-api5 / voice.py
Artrajz's picture
update
dc13618
raw
history blame
14.3 kB
import os
import librosa
import re
import numpy as np
import torch
import xml.etree.ElementTree as ET
import config
import soundfile as sf
from io import BytesIO
from graiax import silkcoder
from utils import utils
from logger import logger
# torch.set_num_threads(1) # 设置torch线程为1
class TTS:
def __init__(self, voice_obj, voice_speakers, w2v2_emotion_count=0, device=torch.device("cpu")):
self._voice_obj = voice_obj
self._voice_speakers = voice_speakers
self._strength_dict = {"x-weak": 0.25, "weak": 0.5, "Medium": 0.75, "Strong": 1, "x-strong": 1.25}
self._speakers_count = sum([len(self._voice_speakers[i]) for i in self._voice_speakers])
self._vits_speakers_count = len(self._voice_speakers["VITS"])
self._hubert_speakers_count = len(self._voice_speakers["HUBERT-VITS"])
self._w2v2_speakers_count = len(self._voice_speakers["W2V2-VITS"])
self._w2v2_emotion_count = w2v2_emotion_count
self._bert_vits2_speakers_count = len(self._voice_speakers["BERT-VITS2"])
self.dem = None
# Initialization information
self.logger = logger
self.logger.info(f"torch:{torch.__version__} cuda_available:{torch.cuda.is_available()}")
self.logger.info(f'device:{device} device.type:{device.type}')
if getattr(config, "DIMENSIONAL_EMOTION_MODEL", None) != None:
try:
import audonnx
root = os.path.dirname(config.DIMENSIONAL_EMOTION_MODEL)
model_file = config.DIMENSIONAL_EMOTION_MODEL
self.dem = audonnx.load(root=root, model_file=model_file)
except Exception as e:
self.logger.warning(f"Load DIMENSIONAL_EMOTION_MODEL failed {e}")
if self._vits_speakers_count != 0: self.logger.info(f"[VITS] {self._vits_speakers_count} speakers")
if self._hubert_speakers_count != 0: self.logger.info(f"[hubert] {self._hubert_speakers_count} speakers")
if self._w2v2_speakers_count != 0: self.logger.info(f"[w2v2] {self._w2v2_speakers_count} speakers")
if self._bert_vits2_speakers_count != 0: self.logger.info(f"[Bert-VITS2] {self._bert_vits2_speakers_count} speakers")
self.logger.info(f"{self._speakers_count} speakers in total.")
if self._speakers_count == 0:
self.logger.warning(f"No model was loaded.")
@property
def voice_speakers(self):
return self._voice_speakers
@property
def speakers_count(self):
return self._speakers_count
@property
def vits_speakers_count(self):
return self._vits_speakers_count
@property
def hubert_speakers_count(self):
return self._hubert_speakers_count
@property
def w2v2_speakers_count(self):
return self._w2v2_speakers_count
@property
def w2v2_emotion_count(self):
return self._w2v2_emotion_count
@property
def bert_vits2_speakers_count(self):
return self._bert_vits2_speakers_count
def encode(self, sampling_rate, audio, format):
with BytesIO() as f:
if format.upper() == 'OGG':
sf.write(f, audio, sampling_rate, format="ogg")
return BytesIO(f.getvalue())
elif format.upper() == 'SILK':
sf.write(f, audio, sampling_rate, format="wav")
return BytesIO(silkcoder.encode(f))
elif format.upper() == 'MP3':
sf.write(f, audio, sampling_rate, format="mp3")
return BytesIO(f.getvalue())
elif format.upper() == 'WAV':
sf.write(f, audio, sampling_rate, format="wav")
return BytesIO(f.getvalue())
elif format.upper() == 'FLAC':
sf.write(f, audio, sampling_rate, format="flac")
return BytesIO(f.getvalue())
else:
raise ValueError(f"Unsupported format:{format}")
def convert_time_string(self, time_string):
time_value = float(re.findall(r'\d+\.?\d*', time_string)[0])
time_unit = re.findall(r'[a-zA-Z]+', time_string)[0].lower()
if time_unit.upper() == 'MS':
return time_value / 1000
elif time_unit.upper() == 'S':
return time_value
elif time_unit.upper() == 'MIN':
return time_value * 60
elif time_unit.upper() == 'H':
return time_value * 3600
elif time_unit.upper() == 'D':
return time_value * 24 * 3600 # 不会有人真写D吧?
else:
raise ValueError("Unsupported time unit: {}".format(time_unit))
def generate_audio_chunks(self, audio):
chunk_size = 4096
while True:
chunk = audio.read(chunk_size)
if not chunk:
break
yield chunk
def parse_ssml(self, ssml):
root = ET.fromstring(ssml)
format = root.attrib.get("format", "wav")
voice_tasks = []
brk_count = 0
strength_dict = {"x-weak": 0.25, "weak": 0.5, "Medium": 0.75, "Strong": 1, "x-strong": 1.25}
for element in root.iter():
if element.tag == "voice":
id = int(element.attrib.get("id", root.attrib.get("id", config.ID)))
lang = element.attrib.get("lang", root.attrib.get("lang", config.LANG))
length = float(element.attrib.get("length", root.attrib.get("length", config.LENGTH)))
noise = float(element.attrib.get("noise", root.attrib.get("noise", config.NOISE)))
noisew = float(element.attrib.get("noisew", root.attrib.get("noisew", config.NOISEW)))
max = int(element.attrib.get("max", root.attrib.get("max", "0")))
# 不填写默认就是vits
model = element.attrib.get("model", root.attrib.get("model", "vits"))
# w2v2-vits/emotion-vits才有emotion
emotion = int(element.attrib.get("emotion", root.attrib.get("emotion", 0)))
voice_element = ET.tostring(element, encoding='unicode')
pattern_voice = r'<voice.*?>(.*?)</voice>'
pattern_break = r'<break\s*?(.*?)\s*?/>'
matches_voice = re.findall(pattern_voice, voice_element)[0]
matches_break = re.split(pattern_break, matches_voice)
for match in matches_break:
strength = re.search(r'\s*strength\s*=\s*[\'\"](.*?)[\'\"]', match)
time = re.search(r'\s*time\s*=\s*[\'\"](.*?)[\'\"]', match)
# break标签 strength属性
if strength:
brk = strength_dict[strength.group(1)]
voice_tasks.append({"break": brk})
brk_count += 1
# break标签 time属性
elif time:
brk = self.convert_time_string(time.group(1))
voice_tasks.append({"break": brk})
brk_count += 1
# break标签 为空说明只写了break,默认停顿0.75s
elif match == "":
voice_tasks.append({"break": 0.75})
brk_count += 1
# voice标签中除了break剩下的就是文本
else:
voice_tasks.append({"id": id,
"text": match,
"lang": lang,
"length": length,
"noise": noise,
"noisew": noisew,
"max": max,
"model": model,
"emotion": emotion
})
# 分段末尾停顿0.75s
voice_tasks.append({"break": 0.75})
elif element.tag == "break":
# brk_count大于0说明voice标签中有break
if brk_count > 0:
brk_count -= 1
continue
brk = strength_dict.get(element.attrib.get("strength"),
self.convert_time_string(element.attrib.get("time", "750ms")))
voice_tasks.append({"break": brk})
for i in voice_tasks:
self.logger.debug(i)
return voice_tasks, format
def create_ssml_infer_task(self, voice_tasks, format, fname):
audios = []
for voice in voice_tasks:
if voice.get("break"):
audios.append(np.zeros(int(voice.get("break") * 22050), dtype=np.int16))
else:
model = voice.get("model").upper()
if model != "VITS" and model != "W2V2-VITS" and model != "EMOTION-VITS":
raise ValueError(f"Unsupported model: {voice.get('model')}")
voice_obj = self._voice_obj[model][voice.get("id")][1]
voice["id"] = self._voice_obj[model][voice.get("id")][0]
audio = voice_obj.get_audio(voice)
audios.append(audio)
audio = np.concatenate(audios, axis=0)
encoded_audio = self.encode(voice_obj.hps_ms.data.sampling_rate, audio, format)
if getattr(config, "SAVE_AUDIO", False):
path = f"{config.CACHE_PATH}/{fname}"
utils.save_audio(encoded_audio.getvalue(), path)
return encoded_audio
def vits_infer(self, voice, fname):
format = voice.get("format", "wav")
voice_obj = self._voice_obj["VITS"][voice.get("id")][1]
voice["id"] = self._voice_obj["VITS"][voice.get("id")][0]
sampling_rate = voice_obj.hps_ms.data.sampling_rate
audio = voice_obj.get_audio(voice, auto_break=True)
encoded_audio = self.encode(sampling_rate, audio, format)
if getattr(config, "SAVE_AUDIO", False):
path = f"{config.CACHE_PATH}/{fname}"
utils.save_audio(encoded_audio.getvalue(), path)
return encoded_audio
def stream_vits_infer(self, voice, fname):
format = voice.get("format", "wav")
voice_obj = self._voice_obj["VITS"][voice.get("id")][1]
voice["id"] = self._voice_obj["VITS"][voice.get("id")][0]
sampling_rate = voice_obj.hps_ms.data.sampling_rate
genertator = voice_obj.get_stream_audio(voice, auto_break=True)
audio = BytesIO()
for chunk in genertator:
encoded_audio = self.encode(sampling_rate, chunk, format)
for encoded_audio_chunk in self.generate_audio_chunks(encoded_audio):
yield encoded_audio_chunk
if getattr(config, "SAVE_AUDIO", False):
audio.write(encoded_audio.getvalue())
if getattr(config, "SAVE_AUDIO", False):
path = f"{config.CACHE_PATH}/{fname}"
utils.save_audio(audio.getvalue(), path)
def hubert_vits_infer(self, voice, fname):
format = voice.get("format", "wav")
voice_obj = self._voice_obj["HUBERT-VITS"][voice.get("id")][1]
voice["id"] = self._voice_obj["HUBERT-VITS"][voice.get("id")][0]
sampling_rate = voice_obj.hps_ms.data.sampling_rate
audio = voice_obj.get_audio(voice)
encoded_audio = self.encode(sampling_rate, audio, format)
if getattr(config, "SAVE_AUDIO", False):
path = f"{config.CACHE_PATH}/{fname}"
utils.save_audio(encoded_audio.getvalue(), path)
return encoded_audio
def w2v2_vits_infer(self, voice, fname):
format = voice.get("format", "wav")
voice_obj = self._voice_obj["W2V2-VITS"][voice.get("id")][1]
voice["id"] = self._voice_obj["W2V2-VITS"][voice.get("id")][0]
sampling_rate = voice_obj.hps_ms.data.sampling_rate
audio = voice_obj.get_audio(voice, auto_break=True)
encoded_audio = self.encode(sampling_rate, audio, format)
if getattr(config, "SAVE_AUDIO", False):
path = f"{config.CACHE_PATH}/{fname}"
utils.save_audio(encoded_audio.getvalue(), path)
return encoded_audio
def vits_voice_conversion(self, voice, fname):
original_id = voice.get("original_id")
target_id = voice.get("target_id")
format = voice.get("format")
original_id_obj = int(self._voice_obj["VITS"][original_id][2])
target_id_obj = int(self._voice_obj["VITS"][target_id][2])
if original_id_obj != target_id_obj:
raise ValueError(f"speakers are in diffrent VITS Model")
voice["original_id"] = int(self._voice_obj["VITS"][original_id][0])
voice["target_id"] = int(self._voice_obj["VITS"][target_id][0])
voice_obj = self._voice_obj["VITS"][original_id][1]
sampling_rate = voice_obj.hps_ms.data.sampling_rate
audio = voice_obj.voice_conversion(voice)
encoded_audio = self.encode(sampling_rate, audio, format)
if getattr(config, "SAVE_AUDIO", False):
path = f"{config.CACHE_PATH}/{fname}"
utils.save_audio(encoded_audio.getvalue(), path)
return encoded_audio
def get_dimensional_emotion_npy(self, audio):
if self.dem is None:
raise ValueError(f"Please configure DIMENSIONAL_EMOTION_MODEL path in config.py")
audio16000, sampling_rate = librosa.load(audio, sr=16000, mono=True)
emotion = self.dem(audio16000, sampling_rate)['hidden_states']
emotion_npy = BytesIO()
np.save(emotion_npy, emotion.squeeze(0))
emotion_npy.seek(0)
return emotion_npy
def bert_vits2_infer(self, voice, fname):
format = voice.get("format", "wav")
voice_obj = self._voice_obj["BERT-VITS2"][voice.get("id")][1]
voice["id"] = self._voice_obj["BERT-VITS2"][voice.get("id")][0]
sampling_rate = voice_obj.hps_ms.data.sampling_rate
audio = voice_obj.get_audio(voice, auto_break=True)
encoded_audio = self.encode(sampling_rate, audio, format)
if getattr(config, "SAVE_AUDIO", False):
path = f"{config.CACHE_PATH}/{fname}"
utils.save_audio(encoded_audio.getvalue(), path)
return encoded_audio