Spaces:
Running
Running
Init commit
Browse files- README.md +3 -3
- app.py +123 -0
- requirements.txt +6 -0
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: Trading Analyst
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.39.0
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
title: Trading Analyst
|
3 |
+
emoji: π
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: green
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.39.0
|
8 |
app_file: app.py
|
app.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import pandas as pd
|
5 |
+
import torch
|
6 |
+
from GoogleNews import GoogleNews
|
7 |
+
from transformers import pipeline
|
8 |
+
|
9 |
+
# Set up logging
|
10 |
+
logging.basicConfig(
|
11 |
+
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
12 |
+
)
|
13 |
+
|
14 |
+
SENTIMENT_ANALYSIS_MODEL = (
|
15 |
+
"mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis"
|
16 |
+
)
|
17 |
+
|
18 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
+
logging.info(f"Using device: {DEVICE}")
|
20 |
+
|
21 |
+
logging.info("Initializing sentiment analysis model...")
|
22 |
+
sentiment_analyzer = pipeline(
|
23 |
+
"sentiment-analysis", model=SENTIMENT_ANALYSIS_MODEL, device=DEVICE
|
24 |
+
)
|
25 |
+
logging.info("Model initialized successfully")
|
26 |
+
|
27 |
+
|
28 |
+
def fetch_articles(asset_name):
|
29 |
+
logging.info(f"Fetching articles for asset: {asset_name}")
|
30 |
+
googlenews = GoogleNews(lang="en")
|
31 |
+
googlenews.search(asset_name)
|
32 |
+
articles = googlenews.result()
|
33 |
+
logging.info(f"Fetched {len(articles)} articles")
|
34 |
+
return articles
|
35 |
+
|
36 |
+
|
37 |
+
def analyze_article_sentiment(article):
|
38 |
+
logging.info(f"Analyzing sentiment for article: {article['title']}")
|
39 |
+
sentiment = sentiment_analyzer(article["desc"])[0]
|
40 |
+
article["sentiment"] = sentiment
|
41 |
+
return article
|
42 |
+
|
43 |
+
|
44 |
+
def analyze_asset_sentiment(asset_name):
|
45 |
+
logging.info(f"Starting sentiment analysis for asset: {asset_name}")
|
46 |
+
|
47 |
+
logging.info("Fetching articles")
|
48 |
+
articles = fetch_articles(asset_name)
|
49 |
+
|
50 |
+
logging.info("Analyzing sentiment of each article")
|
51 |
+
analyzed_articles = [analyze_article_sentiment(article) for article in articles]
|
52 |
+
|
53 |
+
logging.info("Sentiment analysis completed")
|
54 |
+
|
55 |
+
return convert_to_dataframe(analyzed_articles)
|
56 |
+
|
57 |
+
|
58 |
+
def convert_to_dataframe(analyzed_articles):
|
59 |
+
df = pd.DataFrame(analyzed_articles)
|
60 |
+
df["Title"] = df.apply(
|
61 |
+
lambda row: f'<a href="{row["link"]}" target="_blank">{row["title"]}</a>',
|
62 |
+
axis=1,
|
63 |
+
)
|
64 |
+
df["Description"] = df["desc"]
|
65 |
+
df["Date"] = df["date"]
|
66 |
+
|
67 |
+
def sentiment_badge(sentiment):
|
68 |
+
colors = {
|
69 |
+
"negative": "red",
|
70 |
+
"neutral": "gray",
|
71 |
+
"positive": "green",
|
72 |
+
}
|
73 |
+
color = colors.get(sentiment, "grey")
|
74 |
+
return f'<span style="background-color: {color}; color: white; padding: 2px 6px; border-radius: 4px;">{sentiment}</span>'
|
75 |
+
|
76 |
+
df["Sentiment"] = df["sentiment"].apply(lambda x: sentiment_badge(x["label"]))
|
77 |
+
return df[["Sentiment", "Title", "Description", "Date"]]
|
78 |
+
|
79 |
+
|
80 |
+
with gr.Blocks() as iface:
|
81 |
+
gr.Markdown("# Trading Asset Sentiment Analysis")
|
82 |
+
gr.Markdown(
|
83 |
+
"Enter the name of a trading asset, and I'll fetch recent articles and analyze their sentiment!"
|
84 |
+
)
|
85 |
+
|
86 |
+
with gr.Row():
|
87 |
+
input_asset = gr.Textbox(
|
88 |
+
label="Asset Name",
|
89 |
+
lines=1,
|
90 |
+
placeholder="Enter the name of the trading asset...",
|
91 |
+
)
|
92 |
+
|
93 |
+
with gr.Row():
|
94 |
+
analyze_button = gr.Button("Analyze Sentiment", size="sm")
|
95 |
+
|
96 |
+
gr.Examples(
|
97 |
+
examples=[
|
98 |
+
"Bitcoin",
|
99 |
+
"Tesla",
|
100 |
+
"Apple",
|
101 |
+
"Amazon",
|
102 |
+
],
|
103 |
+
inputs=input_asset,
|
104 |
+
)
|
105 |
+
|
106 |
+
with gr.Row():
|
107 |
+
with gr.Column():
|
108 |
+
with gr.Blocks():
|
109 |
+
gr.Markdown("## Articles and Sentiment Analysis")
|
110 |
+
articles_output = gr.Dataframe(
|
111 |
+
headers=["Sentiment", "Title", "Description", "Date"],
|
112 |
+
datatype=["markdown", "html", "markdown", "markdown"],
|
113 |
+
wrap=False,
|
114 |
+
)
|
115 |
+
|
116 |
+
analyze_button.click(
|
117 |
+
analyze_asset_sentiment,
|
118 |
+
inputs=[input_asset],
|
119 |
+
outputs=[articles_output],
|
120 |
+
)
|
121 |
+
|
122 |
+
logging.info("Launching Gradio interface")
|
123 |
+
iface.queue().launch()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.39.0
|
2 |
+
transformers==4.43.2
|
3 |
+
diffusers==0.29.2
|
4 |
+
accelerate==0.33.0
|
5 |
+
sentencepiece==0.2.0
|
6 |
+
GoogleNews==1.6.14
|