daishen commited on
Commit
af9d904
·
1 Parent(s): dc5f5d5

update results

Browse files
Files changed (4) hide show
  1. app.py +2 -2
  2. get_data_info.py +16 -18
  3. leaderboard.xlsx +0 -0
  4. scores.xlsx +0 -0
app.py CHANGED
@@ -66,7 +66,7 @@ def launch_gradio(df1, df2):
66
 
67
  with gr.Row():
68
  for key, df in df1.items():
69
- if key == "Overall" or key == "Basic Legal NLP":
70
  df = df.replace('', 0)
71
  new_df = df[[val for val in df.columns]].copy()
72
  # new_df = reindex_cols(Task_COLS, new_df)
@@ -77,7 +77,7 @@ def launch_gradio(df1, df2):
77
 
78
  with gr.Row():
79
  for key, df in df1.items():
80
- if key == "Basic Legal Application" or key == "Complex Legal Application":
81
  # if True:
82
  df = df.replace('', 0)
83
  new_df = df[[val for val in df.columns]].copy()
 
66
 
67
  with gr.Row():
68
  for key, df in df1.items():
69
+ if key == "Overall" or key == "Basic Information Retrieval":
70
  df = df.replace('', 0)
71
  new_df = df[[val for val in df.columns]].copy()
72
  # new_df = reindex_cols(Task_COLS, new_df)
 
77
 
78
  with gr.Row():
79
  for key, df in df1.items():
80
+ if key == "Legal Foundation Inference" or key == "Complex Legal Application":
81
  # if True:
82
  df = df.replace('', 0)
83
  new_df = df[[val for val in df.columns]].copy()
get_data_info.py CHANGED
@@ -8,13 +8,11 @@ def process_plot_data(df, flag=False):
8
  df2 = df[["Model", "Domain"]].copy()
9
 
10
  columns_names = ["Model", "Domain", "AR", "ER", "NER", "JS", "CR", "CFM", "SCM",
11
- "CJP", "CTP", "LQA", "JRG", "CU", "LC", "JRG-TAG", "LC-TAG"]
12
  # 计算新的列的值
13
  for col in columns_names[2:]:
14
- if col in ["AR", "ER", "CR", "CFM", "SCM", "CTP", "LQA"]:
15
  df2[col] = df[f"{col}-F1"] * 100
16
- if col == "CJP":
17
- df2[col] = df[[f"{col}-CP-F1", f"{col}-PTP-F1"]].mean(axis=1) * 100
18
  if col == "NER":
19
  df2[col] = df[f"{col}-Acc"] * 100
20
  if col in ["JRG", "LC", "JS", "CU", "JRG-TAG", "LC-TAG"]:
@@ -46,17 +44,17 @@ def plot_data():
46
  df = process_plot_data(leaderboard_df)
47
  # df.drop(df[df['Model'] == 'Baichuan-7B'].index, inplace=True)
48
 
49
- df_nlp = df.iloc[:, [0] + list(range(2, 7))]
50
- df_basic = df.iloc[:, [0] + list(range(7, 12))]
51
- df_complex = df.iloc[:, [0] + list(range(12, 15))]
52
 
53
  # Get df_overall
54
  df_overall = df.iloc[:, [0] + list(range(2, 15))]
55
  plot_df_dict = {
56
  "Overall": df_overall,
57
- "Basic Legal NLP": df_nlp,
58
- "Basic Legal Application": df_basic,
59
- "Complex Legal Application": df_complex,
60
  }
61
  return plot_df_dict
62
 
@@ -72,19 +70,19 @@ def tab_data():
72
  leaderboard_df.fillna("-")
73
  # leaderboard_df.drop(leaderboard_df[leaderboard_df['Model'] == 'Baichuan-7B'].index, inplace=True)
74
 
75
- df_nlp = leaderboard_df.iloc[:, list(range(0, 18))]
76
- df_basic = leaderboard_df.iloc[:, list(range(0, 2)) + list(range(18, 42))]
77
- df_complex = leaderboard_df.iloc[:, list(range(0, 2)) + list(range(42, 56))]
78
 
79
  # Get df_overall
80
  df_overall = leaderboard_df.iloc[:, list(range(0, 56))]
81
- plot_df_dict = {
82
  "Overall": df_overall,
83
- "Basic Legal NLP": df_nlp,
84
- "Basic Legal Application": df_basic,
85
- "Complex Legal Application": df_complex,
86
  }
87
- return plot_df_dict
88
 
89
 
90
  if __name__ == "__main__":
 
8
  df2 = df[["Model", "Domain"]].copy()
9
 
10
  columns_names = ["Model", "Domain", "AR", "ER", "NER", "JS", "CR", "CFM", "SCM",
11
+ "CP", "PTP", "CTP", "LQA", "JRG", "CU", "LC", "JRG-TAG", "LC-TAG"]
12
  # 计算新的列的值
13
  for col in columns_names[2:]:
14
+ if col in ["AR", "ER", "CR", "CFM", "SCM", "CP", "PTP", "CTP", "LQA"]:
15
  df2[col] = df[f"{col}-F1"] * 100
 
 
16
  if col == "NER":
17
  df2[col] = df[f"{col}-Acc"] * 100
18
  if col in ["JRG", "LC", "JS", "CU", "JRG-TAG", "LC-TAG"]:
 
44
  df = process_plot_data(leaderboard_df)
45
  # df.drop(df[df['Model'] == 'Baichuan-7B'].index, inplace=True)
46
 
47
+ df_BIR = df.iloc[:, [0] + list(range(2, 7))]
48
+ df_LFI = df.iloc[:, [0] + list(range(7, 13))]
49
+ df_CLA = df.iloc[:, [0] + list(range(13, 16))]
50
 
51
  # Get df_overall
52
  df_overall = df.iloc[:, [0] + list(range(2, 15))]
53
  plot_df_dict = {
54
  "Overall": df_overall,
55
+ "Basic Information Retrieval": df_BIR,
56
+ "Legal Foundation Inference": df_LFI,
57
+ "Complex Legal Application": df_CLA,
58
  }
59
  return plot_df_dict
60
 
 
70
  leaderboard_df.fillna("-")
71
  # leaderboard_df.drop(leaderboard_df[leaderboard_df['Model'] == 'Baichuan-7B'].index, inplace=True)
72
 
73
+ df_BIR = leaderboard_df.iloc[:, list(range(0, 18))]
74
+ df_LFI = leaderboard_df.iloc[:, list(range(0, 2)) + list(range(18, 42))]
75
+ df_CLA = leaderboard_df.iloc[:, list(range(0, 2)) + list(range(42, 56))]
76
 
77
  # Get df_overall
78
  df_overall = leaderboard_df.iloc[:, list(range(0, 56))]
79
+ table_df_dict = {
80
  "Overall": df_overall,
81
+ "Basic Information Retrieval": df_BIR,
82
+ "Legal Foundation Inference": df_LFI,
83
+ "Complex Legal Application": df_CLA,
84
  }
85
+ return table_df_dict
86
 
87
 
88
  if __name__ == "__main__":
leaderboard.xlsx CHANGED
Binary files a/leaderboard.xlsx and b/leaderboard.xlsx differ
 
scores.xlsx CHANGED
Binary files a/scores.xlsx and b/scores.xlsx differ