Leffa / leffa /model.py
franciszzj's picture
init code
b213d84
raw
history blame
12.6 kB
import logging
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers import AutoencoderKL, DDPMScheduler
from leffa.diffusion_model.unet_ref import (
UNet2DConditionModel as ReferenceUNet,
)
from leffa.diffusion_model.unet_gen import (
UNet2DConditionModel as GenerativeUNet,
)
logger: logging.Logger = logging.getLogger(__name__)
class LeffaModel(nn.Module):
def __init__(
self,
pretrained_model_name_or_path: str = "",
pretrained_model: str = "",
new_in_channels: int = 12, # noisy_image: 4, mask: 1, masked_image: 4, densepose: 3
height: int = 1024,
width: int = 768,
):
super().__init__()
self.height = height
self.width = width
self.build_models(
pretrained_model_name_or_path,
pretrained_model,
new_in_channels,
)
def build_models(
self,
pretrained_model_name_or_path: str = "",
pretrained_model: str = "",
new_in_channels: int = 12,
):
diffusion_model_type = ""
if "stable-diffusion-inpainting" in pretrained_model_name_or_path:
diffusion_model_type = "sd15"
elif "stable-diffusion-xl-1.0-inpainting-0.1" in pretrained_model_name_or_path:
diffusion_model_type = "sdxl"
# Noise Scheduler
self.noise_scheduler = DDPMScheduler.from_pretrained(
pretrained_model_name_or_path,
subfolder="scheduler",
rescale_betas_zero_snr=False if diffusion_model_type == "sd15" else True,
)
# VAE
vae_config, vae_kwargs = AutoencoderKL.load_config(
pretrained_model_name_or_path,
subfolder="vae",
return_unused_kwargs=True,
)
self.vae = AutoencoderKL.from_config(vae_config, **vae_kwargs)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
# Reference UNet
unet_config, unet_kwargs = ReferenceUNet.load_config(
pretrained_model_name_or_path,
subfolder="unet",
return_unused_kwargs=True,
)
self.unet_encoder = ReferenceUNet.from_config(unet_config, **unet_kwargs)
self.unet_encoder.config.addition_embed_type = None
# Generative UNet
unet_config, unet_kwargs = GenerativeUNet.load_config(
pretrained_model_name_or_path,
subfolder="unet",
return_unused_kwargs=True,
)
self.unet = GenerativeUNet.from_config(unet_config, **unet_kwargs)
self.unet.config.addition_embed_type = None
# Change Generative UNet conv_in and conv_out
unet_conv_in_channel_changed = self.unet.config.in_channels != new_in_channels
if unet_conv_in_channel_changed:
self.unet.conv_in = self.replace_conv_in_layer(self.unet, new_in_channels)
self.unet.config.in_channels = new_in_channels
unet_conv_out_channel_changed = (
self.unet.config.out_channels != self.vae.config.latent_channels
)
if unet_conv_out_channel_changed:
self.unet.conv_out = self.replace_conv_out_layer(
self.unet, self.vae.config.latent_channels
)
self.unet.config.out_channels = self.vae.config.latent_channels
unet_encoder_conv_in_channel_changed = (
self.unet_encoder.config.in_channels != self.vae.config.latent_channels
)
if unet_encoder_conv_in_channel_changed:
self.unet_encoder.conv_in = self.replace_conv_in_layer(
self.unet_encoder, self.vae.config.latent_channels
)
self.unet_encoder.config.in_channels = self.vae.config.latent_channels
unet_encoder_conv_out_channel_changed = (
self.unet_encoder.config.out_channels != self.vae.config.latent_channels
)
if unet_encoder_conv_out_channel_changed:
self.unet_encoder.conv_out = self.replace_conv_out_layer(
self.unet_encoder, self.vae.config.latent_channels
)
self.unet_encoder.config.out_channels = self.vae.config.latent_channels
# Remove Cross Attention
remove_cross_attention(self.unet)
remove_cross_attention(self.unet_encoder, model_type="unet_encoder")
# Load pretrained model
if pretrained_model != "" and pretrained_model is not None:
self.load_state_dict(torch.load(pretrained_model, map_location="cpu"))
logger.info("Load pretrained model from {}".format(pretrained_model))
def replace_conv_in_layer(self, unet_model, new_in_channels):
original_conv_in = unet_model.conv_in
if original_conv_in.in_channels == new_in_channels:
return original_conv_in
new_conv_in = torch.nn.Conv2d(
in_channels=new_in_channels,
out_channels=original_conv_in.out_channels,
kernel_size=original_conv_in.kernel_size,
padding=1,
)
new_conv_in.weight.data.zero_()
new_conv_in.bias.data = original_conv_in.bias.data.clone()
if original_conv_in.in_channels < new_in_channels:
new_conv_in.weight.data[:, : original_conv_in.in_channels] = (
original_conv_in.weight.data
)
else:
new_conv_in.weight.data[:, :new_in_channels] = original_conv_in.weight.data[
:, :new_in_channels
]
return new_conv_in
def replace_conv_out_layer(self, unet_model, new_out_channels):
original_conv_out = unet_model.conv_out
if original_conv_out.out_channels == new_out_channels:
return original_conv_out
new_conv_out = torch.nn.Conv2d(
in_channels=original_conv_out.in_channels,
out_channels=new_out_channels,
kernel_size=original_conv_out.kernel_size,
padding=1,
)
new_conv_out.weight.data.zero_()
new_conv_out.bias.data[: original_conv_out.out_channels] = (
original_conv_out.bias.data.clone()
)
if original_conv_out.out_channels < new_out_channels:
new_conv_out.weight.data[: original_conv_out.out_channels] = (
original_conv_out.weight.data
)
else:
new_conv_out.weight.data[:new_out_channels] = original_conv_out.weight.data[
:new_out_channels
]
return new_conv_out
def vae_encode(self, pixel_values):
pixel_values = pixel_values.to(device=self.vae.device, dtype=self.vae.dtype)
with torch.no_grad():
latent = self.vae.encode(pixel_values).latent_dist.sample()
latent = latent * self.vae.config.scaling_factor
return latent
class SkipAttnProcessor(torch.nn.Module):
def __init__(self, *args, **kwargs) -> None:
super().__init__()
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
return hidden_states
def remove_cross_attention(
unet,
cross_attn_cls=SkipAttnProcessor,
self_attn_cls=None,
cross_attn_dim=None,
**kwargs,
):
if cross_attn_dim is None:
cross_attn_dim = unet.config.cross_attention_dim
attn_procs = {}
for name in unet.attn_processors.keys():
cross_attention_dim = (
None if name.endswith("attn1.processor") else cross_attn_dim
)
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is None:
if self_attn_cls is not None:
attn_procs[name] = self_attn_cls(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
**kwargs,
)
else:
# retain the original attn processor
attn_procs[name] = AttnProcessor2_0(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
layer_name=name,
**kwargs,
)
else:
attn_procs[name] = cross_attn_cls(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
**kwargs,
)
unet.set_attn_processor(attn_procs)
adapter_modules = torch.nn.ModuleList(unet.attn_processors.values())
return adapter_modules
class AttnProcessor2_0(torch.nn.Module):
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def __init__(
self, hidden_size=None, cross_attention_dim=None, layer_name=None, **kwargs
):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
)
self.layer_name = layer_name
self.model_type = kwargs.get("model_type", "none")
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
*args,
**kwargs,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(
batch_size, channel, height * width
).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape
if encoder_hidden_states is None
else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(
attention_mask, sequence_length, batch_size
)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(
batch_size, attn.heads, -1, attention_mask.shape[-1]
)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
1, 2
)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(
encoder_hidden_states
)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(
batch_size, -1, attn.heads * head_dim
)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(
batch_size, channel, height, width
)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states