d22cs051's picture
retriying pushing the code
8273cb9
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
from contextlib import redirect_stdout
from fairseq import options
from fairseq_cli import generate
from examples.noisychannel import rerank_options, rerank_utils
def score_bw(args):
if args.backwards1:
scorer1_src = args.target_lang
scorer1_tgt = args.source_lang
else:
scorer1_src = args.source_lang
scorer1_tgt = args.target_lang
if args.score_model2 is not None:
if args.backwards2:
scorer2_src = args.target_lang
scorer2_tgt = args.source_lang
else:
scorer2_src = args.source_lang
scorer2_tgt = args.target_lang
rerank1_is_gen = (
args.gen_model == args.score_model1 and args.source_prefix_frac is None
)
rerank2_is_gen = (
args.gen_model == args.score_model2 and args.source_prefix_frac is None
)
(
pre_gen,
left_to_right_preprocessed_dir,
right_to_left_preprocessed_dir,
backwards_preprocessed_dir,
lm_preprocessed_dir,
) = rerank_utils.get_directories(
args.data_dir_name,
args.num_rescore,
args.gen_subset,
args.gen_model_name,
args.shard_id,
args.num_shards,
args.sampling,
args.prefix_len,
args.target_prefix_frac,
args.source_prefix_frac,
)
score1_file = rerank_utils.rescore_file_name(
pre_gen,
args.prefix_len,
args.model1_name,
target_prefix_frac=args.target_prefix_frac,
source_prefix_frac=args.source_prefix_frac,
backwards=args.backwards1,
)
if args.score_model2 is not None:
score2_file = rerank_utils.rescore_file_name(
pre_gen,
args.prefix_len,
args.model2_name,
target_prefix_frac=args.target_prefix_frac,
source_prefix_frac=args.source_prefix_frac,
backwards=args.backwards2,
)
if args.right_to_left1:
rerank_data1 = right_to_left_preprocessed_dir
elif args.backwards1:
rerank_data1 = backwards_preprocessed_dir
else:
rerank_data1 = left_to_right_preprocessed_dir
gen_param = ["--batch-size", str(128), "--score-reference", "--gen-subset", "train"]
if not rerank1_is_gen and not os.path.isfile(score1_file):
print("STEP 4: score the translations for model 1")
model_param1 = [
"--path",
args.score_model1,
"--source-lang",
scorer1_src,
"--target-lang",
scorer1_tgt,
]
gen_model1_param = [rerank_data1] + gen_param + model_param1
gen_parser = options.get_generation_parser()
input_args = options.parse_args_and_arch(gen_parser, gen_model1_param)
with open(score1_file, "w") as f:
with redirect_stdout(f):
generate.main(input_args)
if (
args.score_model2 is not None
and not os.path.isfile(score2_file)
and not rerank2_is_gen
):
print("STEP 4: score the translations for model 2")
if args.right_to_left2:
rerank_data2 = right_to_left_preprocessed_dir
elif args.backwards2:
rerank_data2 = backwards_preprocessed_dir
else:
rerank_data2 = left_to_right_preprocessed_dir
model_param2 = [
"--path",
args.score_model2,
"--source-lang",
scorer2_src,
"--target-lang",
scorer2_tgt,
]
gen_model2_param = [rerank_data2] + gen_param + model_param2
gen_parser = options.get_generation_parser()
input_args = options.parse_args_and_arch(gen_parser, gen_model2_param)
with open(score2_file, "w") as f:
with redirect_stdout(f):
generate.main(input_args)
def cli_main():
parser = rerank_options.get_reranking_parser()
args = options.parse_args_and_arch(parser)
score_bw(args)
if __name__ == "__main__":
cli_main()