adding lm_eval class
Browse files- app.py +52 -0
- dmx_lm_eval.py +96 -0
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import evaluate
|
2 |
+
from evaluate.utils import infer_gradio_input_types, parse_gradio_data, json_to_string_type, parse_readme
|
3 |
+
from pathlib import Path
|
4 |
+
import sys
|
5 |
+
|
6 |
+
def launch_gradio_widget(metric):
|
7 |
+
"""Launches metric widget with Gradio."""
|
8 |
+
try:
|
9 |
+
import gradio as gr
|
10 |
+
except ImportError as error:
|
11 |
+
raise ImportError("To create a metric widget with Gradio, make sure gradio is installed.") from error
|
12 |
+
|
13 |
+
local_path = Path(sys.path[0])
|
14 |
+
|
15 |
+
if isinstance(metric.features, list):
|
16 |
+
(feature_names, feature_types) = zip(*metric.features[0].items())
|
17 |
+
else:
|
18 |
+
(feature_names, feature_types) = zip(*metric.features.items())
|
19 |
+
|
20 |
+
gradio_input_types = infer_gradio_input_types(feature_types)
|
21 |
+
|
22 |
+
def compute(data):
|
23 |
+
return metric._compute(
|
24 |
+
model='gpt2',
|
25 |
+
tasks='wikitext',
|
26 |
+
**parse_gradio_data(data, gradio_input_types)
|
27 |
+
)
|
28 |
+
|
29 |
+
iface = gr.Interface(
|
30 |
+
fn=compute,
|
31 |
+
inputs=gr.Dataframe(
|
32 |
+
headers=feature_names,
|
33 |
+
col_count=len(feature_names),
|
34 |
+
row_count=1,
|
35 |
+
datatype=json_to_string_type(gradio_input_types),
|
36 |
+
),
|
37 |
+
outputs=gr.Textbox(label=metric.name),
|
38 |
+
description=(
|
39 |
+
metric.info.description + "\nThis metric is computed using the 'gpt2' model on the 'wikitext' task.\n"
|
40 |
+
"Ensure your input is appropriate for the selected task. "
|
41 |
+
"If this is a text-based metric, wrap your input in double quotes."
|
42 |
+
" Alternatively, you can use a JSON-formatted list as input."
|
43 |
+
),
|
44 |
+
title=f"Metric: {metric.name}",
|
45 |
+
article=parse_readme(local_path / "README.md"),
|
46 |
+
)
|
47 |
+
|
48 |
+
iface.launch()
|
49 |
+
|
50 |
+
module = evaluate.load("d-matrix/dmx_lm_eval")
|
51 |
+
|
52 |
+
launch_gradio_widget(module)
|
dmx_lm_eval.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import evaluate
|
2 |
+
import lm_eval
|
3 |
+
from typing import Union, List, Optional
|
4 |
+
from dmx.compressor.dmx import config_rules, DmxModel
|
5 |
+
import datasets
|
6 |
+
|
7 |
+
_DESCRIPTION = """
|
8 |
+
Evaluation function using lm-eval with d-Matrix integration.
|
9 |
+
This function allows for the evaluation of language models across various tasks,
|
10 |
+
with the option to use d-Matrix compressed models.
|
11 |
+
"""
|
12 |
+
|
13 |
+
_KWARGS_DESCRIPTION = """
|
14 |
+
Args:
|
15 |
+
model (str): The name or path of the model to evaluate.
|
16 |
+
tasks (Union[str, List[str]]): The task or list of tasks to evaluate on.
|
17 |
+
dmx_config (Optional[str]): Configuration string for d-Matrix transformations, defaults to None.
|
18 |
+
num_fewshot (Optional[int]): Number of examples in few-shot context, defaults to None.
|
19 |
+
batch_size (Optional[Union[int, str]]): Batch size for model, defaults to None.
|
20 |
+
max_batch_size (Optional[int]): Maximum batch size to try with automatic batch size detection, defaults to None.
|
21 |
+
limit (Optional[Union[int, float]]): Limit the number of examples per task, defaults to None.
|
22 |
+
revision (str): Model revision to use, defaults to 'main'.
|
23 |
+
trust_remote_code (bool): Whether to trust remote code, defaults to False.
|
24 |
+
log_samples (bool): If True, logs all model outputs and documents, defaults to True.
|
25 |
+
verbosity (str): Logging verbosity level, defaults to 'CRITICAL'.
|
26 |
+
**kwargs: Additional keyword arguments to pass to `lm_eval.evaluate`.
|
27 |
+
|
28 |
+
Returns:
|
29 |
+
dict: A dictionary containing the evaluation results.
|
30 |
+
"""
|
31 |
+
|
32 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
33 |
+
class DmxMetric(evaluate.Metric):
|
34 |
+
def _info(self):
|
35 |
+
return evaluate.MetricInfo(
|
36 |
+
module_type="metric",
|
37 |
+
description=_DESCRIPTION,
|
38 |
+
citation="",
|
39 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
40 |
+
features=datasets.Features(
|
41 |
+
{
|
42 |
+
"references": datasets.Value("string"),
|
43 |
+
}
|
44 |
+
),
|
45 |
+
reference_urls=["https://github.com/EleutherAI/lm-evaluation-harness"],
|
46 |
+
)
|
47 |
+
|
48 |
+
def _compute(
|
49 |
+
self,
|
50 |
+
model: str,
|
51 |
+
tasks: Union[str, List[str]],
|
52 |
+
dmx_config: Optional[str] = None,
|
53 |
+
num_fewshot: Optional[int] = None,
|
54 |
+
batch_size: Optional[Union[int, str]] = None,
|
55 |
+
max_batch_size: Optional[int] = None,
|
56 |
+
limit: Optional[Union[int, float]] = None,
|
57 |
+
revision: str = "main",
|
58 |
+
trust_remote_code: bool = False,
|
59 |
+
log_samples: bool = True,
|
60 |
+
verbosity: str = "INFO",
|
61 |
+
**kwargs
|
62 |
+
):
|
63 |
+
"""
|
64 |
+
Evaluate a model on multiple tasks and metrics using lm-eval with optional d-Matrix integration.
|
65 |
+
"""
|
66 |
+
model_args = f"pretrained={model},revision={revision},trust_remote_code={str(trust_remote_code)}"
|
67 |
+
|
68 |
+
lm = lm_eval.api.registry.get_model("hf").create_from_arg_string(
|
69 |
+
model_args,
|
70 |
+
{
|
71 |
+
"batch_size": batch_size,
|
72 |
+
"max_batch_size": max_batch_size,
|
73 |
+
}
|
74 |
+
)
|
75 |
+
|
76 |
+
if dmx_config:
|
77 |
+
lm._model = DmxModel.from_torch(lm._model)
|
78 |
+
lm._model.transform(lm._model.dmx_config, *eval(f"config_rules.{dmx_config}"))
|
79 |
+
|
80 |
+
task_dict = lm_eval.tasks.get_task_dict(tasks if isinstance(tasks, list) else [tasks])
|
81 |
+
|
82 |
+
for task in task_dict.values():
|
83 |
+
if num_fewshot is not None:
|
84 |
+
task.set_config(key="num_fewshot", value=num_fewshot)
|
85 |
+
|
86 |
+
eval_params = {
|
87 |
+
'lm': lm,
|
88 |
+
'task_dict': task_dict,
|
89 |
+
'limit': limit,
|
90 |
+
'log_samples': log_samples,
|
91 |
+
'verbosity': verbosity,
|
92 |
+
**kwargs
|
93 |
+
}
|
94 |
+
|
95 |
+
results = lm_eval.evaluate(**eval_params)
|
96 |
+
return results.get('results', {})
|