Align3R / dust3r /datasets /__init__.py
cyun9286's picture
Add application file
f53b39e
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
from .utils.transforms import *
from .base.batched_sampler import BatchedRandomSampler # noqa
# from .arkitscenes import ARKitScenes # noqa
# from .blendedmvs import BlendedMVS # noqa
# from .co3d import Co3d # noqa
# from .habitat import Habitat # noqa
# from .megadepth import MegaDepth # noqa
# from .scannetpp import ScanNetpp # noqa
# from .staticthings3d import StaticThings3D # noqa
# from .waymo import Waymo # noqa
# from .wildrgbd import WildRGBD # noqa
from .my_spring import SpringDatasets
from .my_sceneflow import SceneFlowDatasets
from .my_vkitti2 import VkittiDatasets
from .my_PointOdyssey import PointodysseyDatasets
from .my_Tartanair import TartanairDatasets
from .my_sintel import SintelDatasets
def get_data_loader(dataset, batch_size, num_workers=8, shuffle=True, drop_last=True, pin_mem=True):
import torch
from croco.utils.misc import get_world_size, get_rank
# pytorch dataset
if isinstance(dataset, str):
dataset = eval(dataset)
world_size = get_world_size()
rank = get_rank()
try:
sampler = dataset.make_sampler(batch_size, shuffle=shuffle, world_size=world_size,
rank=rank, drop_last=drop_last)
except (AttributeError, NotImplementedError):
# not avail for this dataset
if torch.distributed.is_initialized():
sampler = torch.utils.data.DistributedSampler(
dataset, num_replicas=world_size, rank=rank, shuffle=shuffle, drop_last=drop_last
)
elif shuffle:
sampler = torch.utils.data.RandomSampler(dataset)
else:
sampler = torch.utils.data.SequentialSampler(dataset)
data_loader = torch.utils.data.DataLoader(
dataset,
sampler=sampler,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=pin_mem,
drop_last=drop_last,
)
return data_loader