cyun9286's picture
Add application file
f53b39e
raw
history blame
10 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import glob
import logging
import os
from dataclasses import dataclass
from typing import List, Optional
import pandas as pd
import torch
from iopath.common.file_io import g_pathmgr
from omegaconf.listconfig import ListConfig
from training.dataset.vos_segment_loader import (
JSONSegmentLoader,
MultiplePNGSegmentLoader,
PalettisedPNGSegmentLoader,
SA1BSegmentLoader,
)
@dataclass
class VOSFrame:
frame_idx: int
image_path: str
data: Optional[torch.Tensor] = None
is_conditioning_only: Optional[bool] = False
@dataclass
class VOSVideo:
video_name: str
video_id: int
frames: List[VOSFrame]
def __len__(self):
return len(self.frames)
class VOSRawDataset:
def __init__(self):
pass
def get_video(self, idx):
raise NotImplementedError()
class PNGRawDataset(VOSRawDataset):
def __init__(
self,
img_folder,
gt_folder,
file_list_txt=None,
excluded_videos_list_txt=None,
sample_rate=1,
is_palette=True,
single_object_mode=False,
truncate_video=-1,
frames_sampling_mult=False,
):
self.img_folder = img_folder
self.gt_folder = gt_folder
self.sample_rate = sample_rate
self.is_palette = is_palette
self.single_object_mode = single_object_mode
self.truncate_video = truncate_video
# Read the subset defined in file_list_txt
if file_list_txt is not None:
with g_pathmgr.open(file_list_txt, "r") as f:
subset = [os.path.splitext(line.strip())[0] for line in f]
else:
subset = os.listdir(self.img_folder)
# Read and process excluded files if provided
if excluded_videos_list_txt is not None:
with g_pathmgr.open(excluded_videos_list_txt, "r") as f:
excluded_files = [os.path.splitext(line.strip())[0] for line in f]
else:
excluded_files = []
# Check if it's not in excluded_files
self.video_names = sorted(
[video_name for video_name in subset if video_name not in excluded_files]
)
if self.single_object_mode:
# single object mode
self.video_names = sorted(
[
os.path.join(video_name, obj)
for video_name in self.video_names
for obj in os.listdir(os.path.join(self.gt_folder, video_name))
]
)
if frames_sampling_mult:
video_names_mult = []
for video_name in self.video_names:
num_frames = len(os.listdir(os.path.join(self.img_folder, video_name)))
video_names_mult.extend([video_name] * num_frames)
self.video_names = video_names_mult
def get_video(self, idx):
"""
Given a VOSVideo object, return the mask tensors.
"""
video_name = self.video_names[idx]
if self.single_object_mode:
video_frame_root = os.path.join(
self.img_folder, os.path.dirname(video_name)
)
else:
video_frame_root = os.path.join(self.img_folder, video_name)
video_mask_root = os.path.join(self.gt_folder, video_name)
if self.is_palette:
segment_loader = PalettisedPNGSegmentLoader(video_mask_root)
else:
segment_loader = MultiplePNGSegmentLoader(
video_mask_root, self.single_object_mode
)
all_frames = sorted(glob.glob(os.path.join(video_frame_root, "*.jpg")))
if self.truncate_video > 0:
all_frames = all_frames[: self.truncate_video]
frames = []
for _, fpath in enumerate(all_frames[:: self.sample_rate]):
fid = int(os.path.basename(fpath).split(".")[0])
frames.append(VOSFrame(fid, image_path=fpath))
video = VOSVideo(video_name, idx, frames)
return video, segment_loader
def __len__(self):
return len(self.video_names)
class SA1BRawDataset(VOSRawDataset):
def __init__(
self,
img_folder,
gt_folder,
file_list_txt=None,
excluded_videos_list_txt=None,
num_frames=1,
mask_area_frac_thresh=1.1, # no filtering by default
uncertain_iou=-1, # no filtering by default
):
self.img_folder = img_folder
self.gt_folder = gt_folder
self.num_frames = num_frames
self.mask_area_frac_thresh = mask_area_frac_thresh
self.uncertain_iou = uncertain_iou # stability score
# Read the subset defined in file_list_txt
if file_list_txt is not None:
with g_pathmgr.open(file_list_txt, "r") as f:
subset = [os.path.splitext(line.strip())[0] for line in f]
else:
subset = os.listdir(self.img_folder)
subset = [
path.split(".")[0] for path in subset if path.endswith(".jpg")
] # remove extension
# Read and process excluded files if provided
if excluded_videos_list_txt is not None:
with g_pathmgr.open(excluded_videos_list_txt, "r") as f:
excluded_files = [os.path.splitext(line.strip())[0] for line in f]
else:
excluded_files = []
# Check if it's not in excluded_files and it exists
self.video_names = [
video_name for video_name in subset if video_name not in excluded_files
]
def get_video(self, idx):
"""
Given a VOSVideo object, return the mask tensors.
"""
video_name = self.video_names[idx]
video_frame_path = os.path.join(self.img_folder, video_name + ".jpg")
video_mask_path = os.path.join(self.gt_folder, video_name + ".json")
segment_loader = SA1BSegmentLoader(
video_mask_path,
mask_area_frac_thresh=self.mask_area_frac_thresh,
video_frame_path=video_frame_path,
uncertain_iou=self.uncertain_iou,
)
frames = []
for frame_idx in range(self.num_frames):
frames.append(VOSFrame(frame_idx, image_path=video_frame_path))
video_name = video_name.split("_")[-1] # filename is sa_{int}
# video id needs to be image_id to be able to load correct annotation file during eval
video = VOSVideo(video_name, int(video_name), frames)
return video, segment_loader
def __len__(self):
return len(self.video_names)
class JSONRawDataset(VOSRawDataset):
"""
Dataset where the annotation in the format of SA-V json files
"""
def __init__(
self,
img_folder,
gt_folder,
file_list_txt=None,
excluded_videos_list_txt=None,
sample_rate=1,
rm_unannotated=True,
ann_every=1,
frames_fps=24,
):
self.gt_folder = gt_folder
self.img_folder = img_folder
self.sample_rate = sample_rate
self.rm_unannotated = rm_unannotated
self.ann_every = ann_every
self.frames_fps = frames_fps
# Read and process excluded files if provided
excluded_files = []
if excluded_videos_list_txt is not None:
if isinstance(excluded_videos_list_txt, str):
excluded_videos_lists = [excluded_videos_list_txt]
elif isinstance(excluded_videos_list_txt, ListConfig):
excluded_videos_lists = list(excluded_videos_list_txt)
else:
raise NotImplementedError
for excluded_videos_list_txt in excluded_videos_lists:
with open(excluded_videos_list_txt, "r") as f:
excluded_files.extend(
[os.path.splitext(line.strip())[0] for line in f]
)
excluded_files = set(excluded_files)
# Read the subset defined in file_list_txt
if file_list_txt is not None:
with g_pathmgr.open(file_list_txt, "r") as f:
subset = [os.path.splitext(line.strip())[0] for line in f]
else:
subset = os.listdir(self.img_folder)
self.video_names = sorted(
[video_name for video_name in subset if video_name not in excluded_files]
)
def get_video(self, video_idx):
"""
Given a VOSVideo object, return the mask tensors.
"""
video_name = self.video_names[video_idx]
video_json_path = os.path.join(self.gt_folder, video_name + "_manual.json")
segment_loader = JSONSegmentLoader(
video_json_path=video_json_path,
ann_every=self.ann_every,
frames_fps=self.frames_fps,
)
frame_ids = [
int(os.path.splitext(frame_name)[0])
for frame_name in sorted(
os.listdir(os.path.join(self.img_folder, video_name))
)
]
frames = [
VOSFrame(
frame_id,
image_path=os.path.join(
self.img_folder, f"{video_name}/%05d.jpg" % (frame_id)
),
)
for frame_id in frame_ids[:: self.sample_rate]
]
if self.rm_unannotated:
# Eliminate the frames that have not been annotated
valid_frame_ids = [
i * segment_loader.ann_every
for i, annot in enumerate(segment_loader.frame_annots)
if annot is not None and None not in annot
]
frames = [f for f in frames if f.frame_idx in valid_frame_ids]
video = VOSVideo(video_name, video_idx, frames)
return video, segment_loader
def __len__(self):
return len(self.video_names)