|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from layer import ConvNextBlock |
|
|
|
class FlowHead(nn.Module): |
|
def __init__(self, input_dim=128, hidden_dim=256): |
|
super(FlowHead, self).__init__() |
|
self.conv1 = nn.Conv2d(input_dim, hidden_dim, 3, padding=1) |
|
self.conv2 = nn.Conv2d(hidden_dim, 2, 3, padding=1) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
def forward(self, x): |
|
return self.conv2(self.relu(self.conv1(x))) |
|
|
|
class ConvGRU(nn.Module): |
|
def __init__(self, hidden_dim=128, input_dim=192+128): |
|
super(ConvGRU, self).__init__() |
|
self.convz = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1) |
|
self.convr = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1) |
|
self.convq = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1) |
|
|
|
def forward(self, h, x): |
|
hx = torch.cat([h, x], dim=1) |
|
|
|
z = torch.sigmoid(self.convz(hx)) |
|
r = torch.sigmoid(self.convr(hx)) |
|
q = torch.tanh(self.convq(torch.cat([r*h, x], dim=1))) |
|
|
|
h = (1-z) * h + z * q |
|
return h |
|
|
|
class SepConvGRU(nn.Module): |
|
def __init__(self, hidden_dim=128, input_dim=192+128): |
|
super(SepConvGRU, self).__init__() |
|
self.convz1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) |
|
self.convr1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) |
|
self.convq1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) |
|
|
|
self.convz2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) |
|
self.convr2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) |
|
self.convq2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) |
|
|
|
|
|
def forward(self, h, x): |
|
|
|
hx = torch.cat([h, x], dim=1) |
|
z = torch.sigmoid(self.convz1(hx)) |
|
r = torch.sigmoid(self.convr1(hx)) |
|
q = torch.tanh(self.convq1(torch.cat([r*h, x], dim=1))) |
|
h = (1-z) * h + z * q |
|
|
|
|
|
hx = torch.cat([h, x], dim=1) |
|
z = torch.sigmoid(self.convz2(hx)) |
|
r = torch.sigmoid(self.convr2(hx)) |
|
q = torch.tanh(self.convq2(torch.cat([r*h, x], dim=1))) |
|
h = (1-z) * h + z * q |
|
|
|
return h |
|
|
|
class SmallMotionEncoder(nn.Module): |
|
def __init__(self, args): |
|
super(SmallMotionEncoder, self).__init__() |
|
cor_planes = args.corr_levels * (2*args.corr_radius + 1)**2 |
|
self.convc1 = nn.Conv2d(cor_planes, 96, 1, padding=0) |
|
self.convf1 = nn.Conv2d(2, 64, 7, padding=3) |
|
self.convf2 = nn.Conv2d(64, 32, 3, padding=1) |
|
self.conv = nn.Conv2d(128, 80, 3, padding=1) |
|
|
|
def forward(self, flow, corr): |
|
cor = F.relu(self.convc1(corr)) |
|
flo = F.relu(self.convf1(flow)) |
|
flo = F.relu(self.convf2(flo)) |
|
cor_flo = torch.cat([cor, flo], dim=1) |
|
out = F.relu(self.conv(cor_flo)) |
|
return torch.cat([out, flow], dim=1) |
|
|
|
class BasicMotionEncoder(nn.Module): |
|
def __init__(self, args): |
|
super(BasicMotionEncoder, self).__init__() |
|
cor_planes = args.corr_levels * (2*args.corr_radius + 1)**2 |
|
self.convc1 = nn.Conv2d(cor_planes, 256, 1, padding=0) |
|
self.convc2 = nn.Conv2d(256, 192, 3, padding=1) |
|
self.convf1 = nn.Conv2d(2, 128, 7, padding=3) |
|
self.convf2 = nn.Conv2d(128, 64, 3, padding=1) |
|
self.conv = nn.Conv2d(64+192, 128-2, 3, padding=1) |
|
|
|
def forward(self, flow, corr): |
|
cor = F.relu(self.convc1(corr)) |
|
cor = F.relu(self.convc2(cor)) |
|
flo = F.relu(self.convf1(flow)) |
|
flo = F.relu(self.convf2(flo)) |
|
|
|
cor_flo = torch.cat([cor, flo], dim=1) |
|
out = F.relu(self.conv(cor_flo)) |
|
return torch.cat([out, flow], dim=1) |
|
|
|
class BasicMotionEncoder2(nn.Module): |
|
def __init__(self, args, dim=128): |
|
super(BasicMotionEncoder2, self).__init__() |
|
cor_planes = args.corr_channel |
|
self.convc1 = nn.Conv2d(cor_planes, dim*2, 1, padding=0) |
|
self.convc2 = nn.Conv2d(dim*2, dim+dim//2, 3, padding=1) |
|
self.convf1 = nn.Conv2d(2, dim, 7, padding=3) |
|
self.convf2 = nn.Conv2d(dim, dim//2, 3, padding=1) |
|
self.conv = nn.Conv2d(dim*2, dim-2, 3, padding=1) |
|
|
|
def forward(self, flow, corr): |
|
cor = F.relu(self.convc1(corr)) |
|
cor = F.relu(self.convc2(cor)) |
|
flo = F.relu(self.convf1(flow)) |
|
flo = F.relu(self.convf2(flo)) |
|
|
|
cor_flo = torch.cat([cor, flo], dim=1) |
|
out = F.relu(self.conv(cor_flo)) |
|
return torch.cat([out, flow], dim=1) |
|
|
|
class SmallUpdateBlock(nn.Module): |
|
def __init__(self, args, hidden_dim=96): |
|
super(SmallUpdateBlock, self).__init__() |
|
self.encoder = SmallMotionEncoder(args) |
|
self.gru = ConvGRU(hidden_dim=hidden_dim, input_dim=82+64) |
|
self.flow_head = FlowHead(hidden_dim, hidden_dim=128) |
|
|
|
def forward(self, net, inp, corr, flow): |
|
motion_features = self.encoder(flow, corr) |
|
inp = torch.cat([inp, motion_features], dim=1) |
|
net = self.gru(net, inp) |
|
delta_flow = self.flow_head(net) |
|
|
|
return net, None, delta_flow |
|
|
|
class BasicUpdateBlock(nn.Module): |
|
def __init__(self, args, hidden_dim=128, input_dim=128): |
|
super(BasicUpdateBlock, self).__init__() |
|
self.args = args |
|
self.encoder = BasicMotionEncoder(args) |
|
self.gru = SepConvGRU(hidden_dim=hidden_dim, input_dim=128+hidden_dim) |
|
self.flow_head = FlowHead(hidden_dim, hidden_dim=256) |
|
|
|
self.mask = nn.Sequential( |
|
nn.Conv2d(128, 256, 3, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(256, 64*9, 1, padding=0)) |
|
|
|
def forward(self, net, inp, corr, flow, upsample=True): |
|
motion_features = self.encoder(flow, corr) |
|
inp = torch.cat([inp, motion_features], dim=1) |
|
|
|
net = self.gru(net, inp) |
|
delta_flow = self.flow_head(net) |
|
|
|
|
|
mask = .25 * self.mask(net) |
|
return net, mask, delta_flow |
|
|
|
class BasicUpdateBlock2(nn.Module): |
|
def __init__(self, args, hdim=128, cdim=128): |
|
|
|
super(BasicUpdateBlock2, self).__init__() |
|
self.args = args |
|
self.encoder = BasicMotionEncoder2(args, dim=cdim) |
|
self.refine = [] |
|
for i in range(args.num_blocks): |
|
self.refine.append(ConvNextBlock(2*cdim+hdim, hdim)) |
|
self.refine = nn.ModuleList(self.refine) |
|
|
|
def forward(self, net, inp, corr, flow, upsample=True): |
|
motion_features = self.encoder(flow, corr) |
|
inp = torch.cat([inp, motion_features], dim=1) |
|
for blk in self.refine: |
|
net = blk(torch.cat([net, inp], dim=1)) |
|
return net |
|
|