|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import datetime |
|
import json |
|
import numpy as np |
|
import os |
|
import sys |
|
import time |
|
|
|
import torch |
|
import torch.distributed as dist |
|
import torch.backends.cudnn as cudnn |
|
from torch.utils.tensorboard import SummaryWriter |
|
import torchvision.transforms as transforms |
|
import torchvision.datasets as datasets |
|
from torch.utils.data import DataLoader |
|
|
|
import utils |
|
import utils.misc as misc |
|
from utils.misc import NativeScalerWithGradNormCount as NativeScaler |
|
from models.croco_downstream import CroCoDownstreamBinocular, croco_args_from_ckpt |
|
from models.pos_embed import interpolate_pos_embed |
|
from models.head_downstream import PixelwiseTaskWithDPT |
|
|
|
from stereoflow.datasets_stereo import get_train_dataset_stereo, get_test_datasets_stereo |
|
from stereoflow.datasets_flow import get_train_dataset_flow, get_test_datasets_flow |
|
from stereoflow.engine import train_one_epoch, validate_one_epoch |
|
from stereoflow.criterion import * |
|
|
|
|
|
def get_args_parser(): |
|
|
|
parser = argparse.ArgumentParser('Finetuning CroCo models on stereo or flow', add_help=False) |
|
subparsers = parser.add_subparsers(title="Task (stereo or flow)", dest="task", required=True) |
|
parser_stereo = subparsers.add_parser('stereo', help='Training stereo model') |
|
parser_flow = subparsers.add_parser('flow', help='Training flow model') |
|
def add_arg(name_or_flags, default=None, default_stereo=None, default_flow=None, **kwargs): |
|
if default is not None: assert default_stereo is None and default_flow is None, "setting default makes default_stereo and default_flow disabled" |
|
parser_stereo.add_argument(name_or_flags, default=default if default is not None else default_stereo, **kwargs) |
|
parser_flow.add_argument(name_or_flags, default=default if default is not None else default_flow, **kwargs) |
|
|
|
add_arg('--output_dir', required=True, type=str, help='path where to save, if empty, automatically created') |
|
|
|
add_arg('--crop', type=int, nargs = '+', default_stereo=[352, 704], default_flow=[320, 384], help = "size of the random image crops used during training.") |
|
add_arg('--pretrained', required=True, type=str, help="Load pretrained model (required as croco arguments come from there)") |
|
|
|
add_arg('--criterion', default_stereo='LaplacianLossBounded2()', default_flow='LaplacianLossBounded()', type=str, help='string to evaluate to get criterion') |
|
add_arg('--bestmetric', default_stereo='avgerr', default_flow='EPE', type=str) |
|
|
|
add_arg('--dataset', type=str, required=True, help="training set") |
|
|
|
add_arg('--seed', default=0, type=int, help='seed') |
|
add_arg('--batch_size', default_stereo=6, default_flow=8, type=int, help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus') |
|
add_arg('--epochs', default=32, type=int, help='number of training epochs') |
|
add_arg('--img_per_epoch', type=int, default=None, help='Fix the number of images seen in an epoch (None means use all training pairs)') |
|
add_arg('--accum_iter', default=1, type=int, help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)') |
|
add_arg('--weight_decay', type=float, default=0.05, help='weight decay (default: 0.05)') |
|
add_arg('--lr', type=float, default_stereo=3e-5, default_flow=2e-5, metavar='LR', help='learning rate (absolute lr)') |
|
add_arg('--min_lr', type=float, default=0., metavar='LR', help='lower lr bound for cyclic schedulers that hit 0') |
|
add_arg('--warmup_epochs', type=int, default=1, metavar='N', help='epochs to warmup LR') |
|
add_arg('--optimizer', default='AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))', type=str, |
|
help="Optimizer from torch.optim [ default: AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95)) ]") |
|
add_arg('--amp', default=0, type=int, choices=[0,1], help='enable automatic mixed precision training') |
|
|
|
add_arg('--val_dataset', type=str, default='', help="Validation sets, multiple separated by + (empty string means that no validation is performed)") |
|
add_arg('--tile_conf_mode', type=str, default_stereo='conf_expsigmoid_15_3', default_flow='conf_expsigmoid_10_5', help='Weights for tile aggregation') |
|
add_arg('--val_overlap', default=0.7, type=float, help='Overlap value for the tiling') |
|
|
|
add_arg('--num_workers', default=8, type=int) |
|
add_arg('--eval_every', type=int, default=1, help='Val loss evaluation frequency') |
|
add_arg('--save_every', type=int, default=1, help='Save checkpoint frequency') |
|
add_arg('--start_from', type=str, default=None, help='Start training using weights from an other model (eg for finetuning)') |
|
add_arg('--tboard_log_step', type=int, default=100, help='Log to tboard every so many steps') |
|
add_arg('--dist_url', default='env://', help='url used to set up distributed training') |
|
|
|
return parser |
|
|
|
|
|
def main(args): |
|
misc.init_distributed_mode(args) |
|
global_rank = misc.get_rank() |
|
num_tasks = misc.get_world_size() |
|
|
|
assert os.path.isfile(args.pretrained) |
|
print("output_dir: "+args.output_dir) |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
|
|
seed = args.seed + misc.get_rank() |
|
torch.manual_seed(seed) |
|
np.random.seed(seed) |
|
cudnn.benchmark = True |
|
|
|
|
|
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') |
|
metrics = (StereoMetrics if args.task=='stereo' else FlowMetrics)().to(device) |
|
criterion = eval(args.criterion).to(device) |
|
print('Criterion: ', args.criterion) |
|
|
|
|
|
assert os.path.isfile(args.pretrained) |
|
ckpt = torch.load(args.pretrained, 'cpu') |
|
croco_args = croco_args_from_ckpt(ckpt) |
|
croco_args['img_size'] = (args.crop[0], args.crop[1]) |
|
print('Croco args: '+str(croco_args)) |
|
args.croco_args = croco_args |
|
|
|
num_channels = {'stereo': 1, 'flow': 2}[args.task] |
|
if criterion.with_conf: num_channels += 1 |
|
print(f'Building head PixelwiseTaskWithDPT() with {num_channels} channel(s)') |
|
head = PixelwiseTaskWithDPT() |
|
head.num_channels = num_channels |
|
|
|
model = CroCoDownstreamBinocular(head, **croco_args) |
|
interpolate_pos_embed(model, ckpt['model']) |
|
msg = model.load_state_dict(ckpt['model'], strict=False) |
|
print(msg) |
|
|
|
total_params = sum(p.numel() for p in model.parameters()) |
|
total_params_trainable = sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
print(f"Total params: {total_params}") |
|
print(f"Total params trainable: {total_params_trainable}") |
|
model_without_ddp = model.to(device) |
|
|
|
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size() |
|
print("lr: %.2e" % args.lr) |
|
print("accumulate grad iterations: %d" % args.accum_iter) |
|
print("effective batch size: %d" % eff_batch_size) |
|
|
|
if args.distributed: |
|
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], static_graph=True) |
|
model_without_ddp = model.module |
|
|
|
|
|
param_groups = misc.get_parameter_groups(model_without_ddp, args.weight_decay) |
|
optimizer = eval(f"torch.optim.{args.optimizer}") |
|
print(optimizer) |
|
loss_scaler = NativeScaler() |
|
|
|
|
|
last_ckpt_fname = os.path.join(args.output_dir, f'checkpoint-last.pth') |
|
args.resume = last_ckpt_fname if os.path.isfile(last_ckpt_fname) else None |
|
|
|
if not args.resume and args.start_from: |
|
print(f"Starting from an other model's weights: {args.start_from}") |
|
best_so_far = None |
|
args.start_epoch = 0 |
|
ckpt = torch.load(args.start_from, 'cpu') |
|
msg = model_without_ddp.load_state_dict(ckpt['model'], strict=False) |
|
print(msg) |
|
else: |
|
best_so_far = misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler) |
|
|
|
if best_so_far is None: best_so_far = np.inf |
|
|
|
|
|
log_writer = None |
|
if global_rank == 0 and args.output_dir is not None: |
|
log_writer = SummaryWriter(log_dir=args.output_dir, purge_step=args.start_epoch*1000) |
|
|
|
|
|
print('Building Train Data loader for dataset: ', args.dataset) |
|
train_dataset = (get_train_dataset_stereo if args.task=='stereo' else get_train_dataset_flow)(args.dataset, crop_size=args.crop) |
|
def _print_repr_dataset(d): |
|
if isinstance(d, torch.utils.data.dataset.ConcatDataset): |
|
for dd in d.datasets: |
|
_print_repr_dataset(dd) |
|
else: |
|
print(repr(d)) |
|
_print_repr_dataset(train_dataset) |
|
print(' total length:', len(train_dataset)) |
|
if args.distributed: |
|
sampler_train = torch.utils.data.DistributedSampler( |
|
train_dataset, num_replicas=num_tasks, rank=global_rank, shuffle=True |
|
) |
|
else: |
|
sampler_train = torch.utils.data.RandomSampler(train_dataset) |
|
data_loader_train = torch.utils.data.DataLoader( |
|
train_dataset, sampler=sampler_train, |
|
batch_size=args.batch_size, |
|
num_workers=args.num_workers, |
|
pin_memory=True, |
|
drop_last=True, |
|
) |
|
if args.val_dataset=='': |
|
data_loaders_val = None |
|
else: |
|
print('Building Val Data loader for datasets: ', args.val_dataset) |
|
val_datasets = (get_test_datasets_stereo if args.task=='stereo' else get_test_datasets_flow)(args.val_dataset) |
|
for val_dataset in val_datasets: print(repr(val_dataset)) |
|
data_loaders_val = [DataLoader(val_dataset, batch_size=1, shuffle=False, num_workers=args.num_workers, pin_memory=True, drop_last=False) for val_dataset in val_datasets] |
|
bestmetric = ("AVG_" if len(data_loaders_val)>1 else str(data_loaders_val[0].dataset)+'_')+args.bestmetric |
|
|
|
print(f"Start training for {args.epochs} epochs") |
|
start_time = time.time() |
|
|
|
for epoch in range(args.start_epoch, args.epochs): |
|
|
|
if args.distributed: data_loader_train.sampler.set_epoch(epoch) |
|
|
|
|
|
epoch_start = time.time() |
|
train_stats = train_one_epoch(model, criterion, metrics, data_loader_train, optimizer, device, epoch, loss_scaler, log_writer=log_writer, args=args) |
|
epoch_time = time.time() - epoch_start |
|
|
|
if args.distributed: dist.barrier() |
|
|
|
|
|
if data_loaders_val is not None and args.eval_every > 0 and (epoch+1) % args.eval_every == 0: |
|
val_epoch_start = time.time() |
|
val_stats = validate_one_epoch(model, criterion, metrics, data_loaders_val, device, epoch, log_writer=log_writer, args=args) |
|
val_epoch_time = time.time() - val_epoch_start |
|
|
|
val_best = val_stats[bestmetric] |
|
|
|
|
|
if val_best <= best_so_far: |
|
best_so_far = val_best |
|
misc.save_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch, best_so_far=best_so_far, fname='best') |
|
|
|
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, |
|
'epoch': epoch, |
|
**{f'val_{k}': v for k, v in val_stats.items()}} |
|
else: |
|
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, |
|
'epoch': epoch,} |
|
|
|
if args.distributed: dist.barrier() |
|
|
|
|
|
if args.output_dir and ((epoch+1) % args.save_every == 0 or epoch + 1 == args.epochs): |
|
misc.save_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch, best_so_far=best_so_far, fname='last') |
|
|
|
if args.output_dir: |
|
if log_writer is not None: |
|
log_writer.flush() |
|
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: |
|
f.write(json.dumps(log_stats) + "\n") |
|
|
|
total_time = time.time() - start_time |
|
total_time_str = str(datetime.timedelta(seconds=int(total_time))) |
|
print('Training time {}'.format(total_time_str)) |
|
|
|
if __name__ == '__main__': |
|
args = get_args_parser() |
|
args = args.parse_args() |
|
main(args) |