|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import datetime |
|
import json |
|
import numpy as np |
|
import os |
|
import sys |
|
import time |
|
import math |
|
from pathlib import Path |
|
from typing import Iterable |
|
|
|
import torch |
|
import torch.distributed as dist |
|
import torch.backends.cudnn as cudnn |
|
from torch.utils.tensorboard import SummaryWriter |
|
import torchvision.transforms as transforms |
|
import torchvision.datasets as datasets |
|
|
|
import utils.misc as misc |
|
from utils.misc import NativeScalerWithGradNormCount as NativeScaler |
|
from models.croco import CroCoNet |
|
from models.criterion import MaskedMSE |
|
from datasets.pairs_dataset import PairsDataset |
|
|
|
|
|
def get_args_parser(): |
|
parser = argparse.ArgumentParser('CroCo pre-training', add_help=False) |
|
|
|
parser.add_argument('--model', default='CroCoNet()', type=str, help="string containing the model to build") |
|
parser.add_argument('--norm_pix_loss', default=1, choices=[0,1], help="apply per-patch mean/std normalization before applying the loss") |
|
|
|
parser.add_argument('--dataset', default='habitat_release', type=str, help="training set") |
|
parser.add_argument('--transforms', default='crop224+acolor', type=str, help="transforms to apply") |
|
|
|
parser.add_argument('--seed', default=0, type=int, help="Random seed") |
|
parser.add_argument('--batch_size', default=64, type=int, help="Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus") |
|
parser.add_argument('--epochs', default=800, type=int, help="Maximum number of epochs for the scheduler") |
|
parser.add_argument('--max_epoch', default=400, type=int, help="Stop training at this epoch") |
|
parser.add_argument('--accum_iter', default=1, type=int, help="Accumulate gradient iterations (for increasing the effective batch size under memory constraints)") |
|
parser.add_argument('--weight_decay', type=float, default=0.05, help="weight decay (default: 0.05)") |
|
parser.add_argument('--lr', type=float, default=None, metavar='LR', help='learning rate (absolute lr)') |
|
parser.add_argument('--blr', type=float, default=1.5e-4, metavar='LR', help='base learning rate: absolute_lr = base_lr * total_batch_size / 256') |
|
parser.add_argument('--min_lr', type=float, default=0., metavar='LR', help='lower lr bound for cyclic schedulers that hit 0') |
|
parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N', help='epochs to warmup LR') |
|
parser.add_argument('--amp', type=int, default=1, choices=[0,1], help="Use Automatic Mixed Precision for pretraining") |
|
|
|
parser.add_argument('--num_workers', default=8, type=int) |
|
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') |
|
parser.add_argument('--local_rank', default=-1, type=int) |
|
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') |
|
parser.add_argument('--save_freq', default=1, type=int, help='frequence (number of epochs) to save checkpoint in checkpoint-last.pth') |
|
parser.add_argument('--keep_freq', default=20, type=int, help='frequence (number of epochs) to save checkpoint in checkpoint-%d.pth') |
|
parser.add_argument('--print_freq', default=20, type=int, help='frequence (number of iterations) to print infos while training') |
|
|
|
parser.add_argument('--output_dir', default='./output/', type=str, help="path where to save the output") |
|
parser.add_argument('--data_dir', default='./data/', type=str, help="path where data are stored") |
|
return parser |
|
|
|
|
|
|
|
|
|
def main(args): |
|
misc.init_distributed_mode(args) |
|
global_rank = misc.get_rank() |
|
world_size = misc.get_world_size() |
|
|
|
print("output_dir: "+args.output_dir) |
|
if args.output_dir: |
|
Path(args.output_dir).mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
last_ckpt_fname = os.path.join(args.output_dir, f'checkpoint-last.pth') |
|
args.resume = last_ckpt_fname if os.path.isfile(last_ckpt_fname) else None |
|
|
|
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__)))) |
|
print("{}".format(args).replace(', ', ',\n')) |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
device = torch.device(device) |
|
|
|
|
|
seed = args.seed + misc.get_rank() |
|
torch.manual_seed(seed) |
|
np.random.seed(seed) |
|
|
|
cudnn.benchmark = True |
|
|
|
|
|
print('Building dataset for {:s} with transforms {:s}'.format(args.dataset, args.transforms)) |
|
dataset = PairsDataset(args.dataset, trfs=args.transforms, data_dir=args.data_dir) |
|
if world_size>1: |
|
sampler_train = torch.utils.data.DistributedSampler( |
|
dataset, num_replicas=world_size, rank=global_rank, shuffle=True |
|
) |
|
print("Sampler_train = %s" % str(sampler_train)) |
|
else: |
|
sampler_train = torch.utils.data.RandomSampler(dataset) |
|
data_loader_train = torch.utils.data.DataLoader( |
|
dataset, sampler=sampler_train, |
|
batch_size=args.batch_size, |
|
num_workers=args.num_workers, |
|
pin_memory=True, |
|
drop_last=True, |
|
) |
|
|
|
|
|
print('Loading model: {:s}'.format(args.model)) |
|
model = eval(args.model) |
|
print('Loading criterion: MaskedMSE(norm_pix_loss={:s})'.format(str(bool(args.norm_pix_loss)))) |
|
criterion = MaskedMSE(norm_pix_loss=bool(args.norm_pix_loss)) |
|
|
|
model.to(device) |
|
model_without_ddp = model |
|
print("Model = %s" % str(model_without_ddp)) |
|
|
|
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size() |
|
if args.lr is None: |
|
args.lr = args.blr * eff_batch_size / 256 |
|
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size)) |
|
print("actual lr: %.2e" % args.lr) |
|
print("accumulate grad iterations: %d" % args.accum_iter) |
|
print("effective batch size: %d" % eff_batch_size) |
|
|
|
if args.distributed: |
|
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True, static_graph=True) |
|
model_without_ddp = model.module |
|
|
|
param_groups = misc.get_parameter_groups(model_without_ddp, args.weight_decay) |
|
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95)) |
|
print(optimizer) |
|
loss_scaler = NativeScaler() |
|
|
|
misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler) |
|
|
|
if global_rank == 0 and args.output_dir is not None: |
|
log_writer = SummaryWriter(log_dir=args.output_dir) |
|
else: |
|
log_writer = None |
|
|
|
print(f"Start training until {args.max_epoch} epochs") |
|
start_time = time.time() |
|
for epoch in range(args.start_epoch, args.max_epoch): |
|
if world_size>1: |
|
data_loader_train.sampler.set_epoch(epoch) |
|
|
|
train_stats = train_one_epoch( |
|
model, criterion, data_loader_train, |
|
optimizer, device, epoch, loss_scaler, |
|
log_writer=log_writer, |
|
args=args |
|
) |
|
|
|
if args.output_dir and epoch % args.save_freq == 0 : |
|
misc.save_model( |
|
args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, |
|
loss_scaler=loss_scaler, epoch=epoch, fname='last') |
|
|
|
if args.output_dir and (epoch % args.keep_freq == 0 or epoch + 1 == args.max_epoch) and (epoch>0 or args.max_epoch==1): |
|
misc.save_model( |
|
args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, |
|
loss_scaler=loss_scaler, epoch=epoch) |
|
|
|
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, |
|
'epoch': epoch,} |
|
|
|
if args.output_dir and misc.is_main_process(): |
|
if log_writer is not None: |
|
log_writer.flush() |
|
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: |
|
f.write(json.dumps(log_stats) + "\n") |
|
|
|
total_time = time.time() - start_time |
|
total_time_str = str(datetime.timedelta(seconds=int(total_time))) |
|
print('Training time {}'.format(total_time_str)) |
|
|
|
|
|
|
|
|
|
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module, |
|
data_loader: Iterable, optimizer: torch.optim.Optimizer, |
|
device: torch.device, epoch: int, loss_scaler, |
|
log_writer=None, |
|
args=None): |
|
model.train(True) |
|
metric_logger = misc.MetricLogger(delimiter=" ") |
|
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}')) |
|
header = 'Epoch: [{}]'.format(epoch) |
|
accum_iter = args.accum_iter |
|
|
|
optimizer.zero_grad() |
|
|
|
if log_writer is not None: |
|
print('log_dir: {}'.format(log_writer.log_dir)) |
|
|
|
for data_iter_step, (image1, image2) in enumerate(metric_logger.log_every(data_loader, args.print_freq, header)): |
|
|
|
|
|
if data_iter_step % accum_iter == 0: |
|
misc.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args) |
|
|
|
image1 = image1.to(device, non_blocking=True) |
|
image2 = image2.to(device, non_blocking=True) |
|
with torch.cuda.amp.autocast(enabled=bool(args.amp)): |
|
out, mask, target = model(image1, image2) |
|
loss = criterion(out, mask, target) |
|
|
|
loss_value = loss.item() |
|
|
|
if not math.isfinite(loss_value): |
|
print("Loss is {}, stopping training".format(loss_value)) |
|
sys.exit(1) |
|
|
|
loss /= accum_iter |
|
loss_scaler(loss, optimizer, parameters=model.parameters(), |
|
update_grad=(data_iter_step + 1) % accum_iter == 0) |
|
if (data_iter_step + 1) % accum_iter == 0: |
|
optimizer.zero_grad() |
|
|
|
torch.cuda.synchronize() |
|
|
|
metric_logger.update(loss=loss_value) |
|
|
|
lr = optimizer.param_groups[0]["lr"] |
|
metric_logger.update(lr=lr) |
|
|
|
loss_value_reduce = misc.all_reduce_mean(loss_value) |
|
if log_writer is not None and ((data_iter_step + 1) % (accum_iter*args.print_freq)) == 0: |
|
|
|
epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000) |
|
log_writer.add_scalar('train_loss', loss_value_reduce, epoch_1000x) |
|
log_writer.add_scalar('lr', lr, epoch_1000x) |
|
|
|
|
|
metric_logger.synchronize_between_processes() |
|
print("Averaged stats:", metric_logger) |
|
return {k: meter.global_avg for k, meter in metric_logger.meters.items()} |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
args = get_args_parser() |
|
args = args.parse_args() |
|
main(args) |
|
|