|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
import torch |
|
from dust3r.utils.geometry import xy_grid |
|
|
|
|
|
def estimate_focal_knowing_depth(pts3d, pp, focal_mode='median', min_focal=0., max_focal=np.inf): |
|
""" Reprojection method, for when the absolute depth is known: |
|
1) estimate the camera focal using a robust estimator |
|
2) reproject points onto true rays, minimizing a certain error |
|
""" |
|
B, H, W, THREE = pts3d.shape |
|
assert THREE == 3 |
|
|
|
|
|
pixels = xy_grid(W, H, device=pts3d.device).view(1, -1, 2) - pp.view(-1, 1, 2) |
|
pts3d = pts3d.flatten(1, 2) |
|
|
|
if focal_mode == 'median': |
|
with torch.no_grad(): |
|
|
|
u, v = pixels.unbind(dim=-1) |
|
x, y, z = pts3d.unbind(dim=-1) |
|
fx_votes = (u * z) / x |
|
fy_votes = (v * z) / y |
|
|
|
|
|
f_votes = torch.cat((fx_votes.view(B, -1), fy_votes.view(B, -1)), dim=-1) |
|
focal = torch.nanmedian(f_votes, dim=-1).values |
|
|
|
elif focal_mode == 'weiszfeld': |
|
|
|
|
|
xy_over_z = (pts3d[..., :2] / pts3d[..., 2:3]).nan_to_num(posinf=0, neginf=0) |
|
|
|
dot_xy_px = (xy_over_z * pixels).sum(dim=-1) |
|
dot_xy_xy = xy_over_z.square().sum(dim=-1) |
|
|
|
focal = dot_xy_px.mean(dim=1) / dot_xy_xy.mean(dim=1) |
|
|
|
|
|
for iter in range(10): |
|
|
|
dis = (pixels - focal.view(-1, 1, 1) * xy_over_z).norm(dim=-1) |
|
|
|
w = dis.clip(min=1e-8).reciprocal() |
|
|
|
focal = (w * dot_xy_px).mean(dim=1) / (w * dot_xy_xy).mean(dim=1) |
|
else: |
|
raise ValueError(f'bad {focal_mode=}') |
|
|
|
focal_base = max(H, W) / (2 * np.tan(np.deg2rad(60) / 2)) |
|
focal = focal.clip(min=min_focal*focal_base, max=max_focal*focal_base) |
|
|
|
return focal |
|
|