|
|
|
|
|
|
|
|
|
|
|
|
|
import contextlib |
|
import fnmatch |
|
import logging |
|
from typing import ( |
|
Any, |
|
Callable, |
|
Dict, |
|
List, |
|
Mapping, |
|
Optional, |
|
Sequence, |
|
Set, |
|
Tuple, |
|
Union, |
|
) |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from iopath.common.file_io import g_pathmgr |
|
from torch.jit._script import RecursiveScriptModule |
|
|
|
|
|
def unix_pattern_to_parameter_names( |
|
constraints: List[str], all_parameter_names: Sequence[str] |
|
) -> Union[None, Set[str]]: |
|
""" |
|
Go through the list of parameter names and select those that match |
|
any of the provided constraints |
|
""" |
|
parameter_names = [] |
|
for param_name in constraints: |
|
matching_parameters = set(fnmatch.filter(all_parameter_names, param_name)) |
|
assert ( |
|
len(matching_parameters) > 0 |
|
), f"param_names {param_name} don't match any param in the given names." |
|
parameter_names.append(matching_parameters) |
|
return set.union(*parameter_names) |
|
|
|
|
|
def filter_params_matching_unix_pattern( |
|
patterns: List[str], state_dict: Dict[str, torch.Tensor] |
|
) -> Dict[str, torch.Tensor]: |
|
""" |
|
Remove from the state dictionary the parameters matching the provided unix patterns |
|
|
|
Args: |
|
patterns: the list of unix patterns to exclude |
|
state_dict: the dictionary to filter |
|
|
|
Returns: |
|
A new state dictionary |
|
""" |
|
if len(patterns) == 0: |
|
return {} |
|
|
|
all_keys = list(state_dict.keys()) |
|
included_keys = unix_pattern_to_parameter_names(patterns, all_keys) |
|
return {k: state_dict[k] for k in included_keys} |
|
|
|
|
|
def exclude_params_matching_unix_pattern( |
|
patterns: List[str], state_dict: Dict[str, torch.Tensor] |
|
) -> Dict[str, torch.Tensor]: |
|
""" |
|
Remove from the state dictionary the parameters matching the provided unix patterns |
|
|
|
Args: |
|
patterns: the list of unix patterns to exclude |
|
state_dict: the dictionary to filter |
|
|
|
Returns: |
|
A new state dictionary |
|
""" |
|
if len(patterns) == 0: |
|
return state_dict |
|
|
|
all_keys = list(state_dict.keys()) |
|
excluded_keys = unix_pattern_to_parameter_names(patterns, all_keys) |
|
return {k: v for k, v in state_dict.items() if k not in excluded_keys} |
|
|
|
|
|
def _get_state_dict_summary(state_dict: Dict[str, torch.Tensor]): |
|
keys = [] |
|
trace = [] |
|
for k, v in state_dict.items(): |
|
keys.append(k) |
|
trace.append(v.sum().item()) |
|
trace = np.array(trace)[np.argsort(keys)] |
|
return trace |
|
|
|
|
|
def assert_skipped_parameters_are_frozen(model: nn.Module, patterns: List[str]): |
|
""" |
|
Verifies that all the parameters matching the provided patterns |
|
are frozen - this acts as a safeguard when ignoring parameter |
|
when saving checkpoints - if the parameters are in fact trainable |
|
""" |
|
if not patterns: |
|
return |
|
|
|
frozen_state_dict = filter_params_matching_unix_pattern( |
|
patterns=patterns, state_dict=model.state_dict() |
|
) |
|
non_frozen_keys = { |
|
n |
|
for n, p in model.named_parameters() |
|
if n in frozen_state_dict and p.requires_grad |
|
} |
|
if non_frozen_keys: |
|
raise ValueError( |
|
f"Parameters excluded with `skip_saving_parameters` should be frozen: {non_frozen_keys}" |
|
) |
|
|
|
|
|
@contextlib.contextmanager |
|
def with_check_parameter_frozen( |
|
model: nn.Module, patterns: List[str], disabled: bool = True |
|
): |
|
""" |
|
Context manager that inspects a model surrounding a piece of code |
|
and verifies if the model has been updated by this piece of code |
|
|
|
The function will raise an exception if the model has been updated |
|
on at least one of the parameter that matches one of the pattern |
|
|
|
Args: |
|
model: the model that might have been updated |
|
patterns: for the parameters we want to observe |
|
allowed: |
|
""" |
|
if not patterns or disabled: |
|
yield |
|
return |
|
|
|
frozen_state_dict = filter_params_matching_unix_pattern( |
|
patterns=patterns, state_dict=model.state_dict() |
|
) |
|
summary_before = _get_state_dict_summary(frozen_state_dict) |
|
|
|
yield |
|
|
|
frozen_state_dict = filter_params_matching_unix_pattern( |
|
patterns=patterns, state_dict=model.state_dict() |
|
) |
|
summary_after = _get_state_dict_summary(frozen_state_dict) |
|
|
|
if not np.allclose(summary_before, summary_after, atol=1e-6): |
|
raise ValueError( |
|
f""" |
|
The `model_weight_initializer` has initialized parameters frozen with `skip_saving_parameters`. |
|
You can resolve this error by either initializing those parameters from within the model definition |
|
or using the flag `trainer.checkpoint.initialize_after_preemption` to True. |
|
""" |
|
) |
|
|
|
|
|
class CkptExcludeKernel: |
|
""" |
|
Removes the keys from the given model state_dict that match the key_pattern. |
|
|
|
Args: |
|
key_pattern: Patterns used to select the keys in the state_dict |
|
that are eligible for this kernel. |
|
""" |
|
|
|
def __init__(self, key_pattern: List[str]): |
|
self.key_pattern = key_pattern |
|
|
|
def __call__(self, state_dict: Dict): |
|
""" |
|
Args: |
|
state_dict: A dictionary representing the given checkpoint's state dict. |
|
""" |
|
if len(self.key_pattern) == 0: |
|
return state_dict |
|
exclude_keys = unix_pattern_to_parameter_names( |
|
self.key_pattern, state_dict.keys() |
|
) |
|
return {k: v for k, v in state_dict.items() if k not in exclude_keys} |
|
|
|
|
|
def load_checkpoint( |
|
path_list: List[str], |
|
pick_recursive_keys: Optional[List[str]] = None, |
|
map_location: str = "cpu", |
|
) -> Any: |
|
""" |
|
Loads a checkpoint from the specified path. |
|
|
|
Args: |
|
path_list: A list of paths which contain the checkpoint. Each element |
|
is tried (in order) until a file that exists is found. That file is then |
|
used to read the checkpoint. |
|
pick_recursive_keys: Picks sub dicts from the loaded checkpoint if not None. |
|
For pick_recursive_keys = ["a", "b"], will return checkpoint_dict["a"]["b"] |
|
map_location (str): a function, torch.device, string or a dict specifying how to |
|
remap storage locations |
|
|
|
Returns: Model with the matchin pre-trained weights loaded. |
|
""" |
|
path_exists = False |
|
for path in path_list: |
|
if g_pathmgr.exists(path): |
|
path_exists = True |
|
break |
|
|
|
if not path_exists: |
|
raise ValueError(f"No path exists in {path_list}") |
|
|
|
with g_pathmgr.open(path, "rb") as f: |
|
checkpoint = torch.load(f, map_location=map_location) |
|
|
|
logging.info(f"Loaded checkpoint from {path}") |
|
if pick_recursive_keys is not None: |
|
for key in pick_recursive_keys: |
|
checkpoint = checkpoint[key] |
|
return checkpoint |
|
|
|
|
|
def get_state_dict(checkpoint, ckpt_state_dict_keys): |
|
if isinstance(checkpoint, RecursiveScriptModule): |
|
|
|
return checkpoint.state_dict() |
|
pre_train_dict = checkpoint |
|
for i, key in enumerate(ckpt_state_dict_keys): |
|
if (isinstance(pre_train_dict, Mapping) and key not in pre_train_dict) or ( |
|
isinstance(pre_train_dict, Sequence) and key >= len(pre_train_dict) |
|
): |
|
key_str = ( |
|
'["' + '"]["'.join(list(map(ckpt_state_dict_keys[:i], str))) + '"]' |
|
) |
|
raise KeyError( |
|
f"'{key}' not found in checkpoint{key_str} " |
|
f"with keys: {pre_train_dict.keys()}" |
|
) |
|
pre_train_dict = pre_train_dict[key] |
|
return pre_train_dict |
|
|
|
|
|
def load_checkpoint_and_apply_kernels( |
|
checkpoint_path: str, |
|
checkpoint_kernels: List[Callable] = None, |
|
ckpt_state_dict_keys: Tuple[str] = ("state_dict",), |
|
map_location: str = "cpu", |
|
) -> nn.Module: |
|
""" |
|
Performs checkpoint loading with a variety of pre-processing kernel applied in |
|
sequence. |
|
|
|
Args: |
|
checkpoint_path (str): Path to the checkpoint. |
|
checkpoint_kernels List(Callable): A list of checkpoint processing kernels |
|
to apply in the specified order. Supported kernels include `CkptIncludeKernel`, |
|
`CkptExcludeKernel`, etc. These kernels are applied in the |
|
given order. |
|
ckpt_state_dict_keys (str): Keys containing the model state dict. |
|
map_location (str): a function, torch.device, string or a dict specifying how to |
|
remap storage locations |
|
|
|
Returns: Model with the matchin pre-trained weights loaded. |
|
""" |
|
assert g_pathmgr.exists(checkpoint_path), "Checkpoint '{}' not found".format( |
|
checkpoint_path |
|
) |
|
|
|
|
|
with g_pathmgr.open(checkpoint_path, "rb") as f: |
|
checkpoint = torch.load(f, map_location=map_location) |
|
|
|
pre_train_dict = get_state_dict(checkpoint, ckpt_state_dict_keys) |
|
|
|
|
|
logging.debug( |
|
"Loaded Checkpoint State Dict pre-kernel application: %s" |
|
% str(", ".join(list(pre_train_dict.keys()))) |
|
) |
|
|
|
if checkpoint_kernels is not None: |
|
for f in checkpoint_kernels: |
|
pre_train_dict = f(state_dict=pre_train_dict) |
|
|
|
logging.debug( |
|
"Loaded Checkpoint State Dict Post-kernel application %s" |
|
% str(", ".join(list(pre_train_dict.keys()))) |
|
) |
|
|
|
return pre_train_dict |
|
|
|
|
|
def check_load_state_dict_errors( |
|
missing_keys, |
|
unexpected_keys, |
|
strict: bool, |
|
ignore_missing_keys: List[str] = None, |
|
ignore_unexpected_keys: List[str] = None, |
|
): |
|
if ignore_missing_keys is not None and len(ignore_missing_keys) > 0: |
|
ignored_keys = unix_pattern_to_parameter_names( |
|
ignore_missing_keys, missing_keys |
|
) |
|
missing_keys = [key for key in missing_keys if key not in ignored_keys] |
|
|
|
if ignore_unexpected_keys is not None and len(ignore_unexpected_keys) > 0: |
|
ignored_unexpected_keys = unix_pattern_to_parameter_names( |
|
ignore_unexpected_keys, unexpected_keys |
|
) |
|
unexpected_keys = [ |
|
key for key in unexpected_keys if key not in ignored_unexpected_keys |
|
] |
|
|
|
err = "State key mismatch." |
|
if unexpected_keys: |
|
err += f" Unexpected keys: {unexpected_keys}." |
|
if missing_keys: |
|
err += f" Missing keys: {missing_keys}." |
|
|
|
if unexpected_keys or missing_keys: |
|
logging.warning(err) |
|
if unexpected_keys or strict: |
|
raise KeyError(err) |
|
|
|
|
|
def load_state_dict_into_model( |
|
state_dict: Dict, |
|
model: nn.Module, |
|
strict: bool = True, |
|
ignore_missing_keys: List[str] = None, |
|
ignore_unexpected_keys: List[str] = None, |
|
checkpoint_kernels: List[Callable] = None, |
|
): |
|
""" |
|
Loads a state dict into the given model. |
|
|
|
Args: |
|
state_dict: A dictionary containing the model's |
|
state dict, or a subset if strict is False |
|
model: Model to load the checkpoint weights into |
|
strict: raise if the state_dict has missing state keys |
|
ignore_missing_keys: unix pattern of keys to ignore |
|
""" |
|
|
|
if checkpoint_kernels is not None: |
|
for f in checkpoint_kernels: |
|
state_dict = f(state_dict=state_dict) |
|
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) |
|
|
|
check_load_state_dict_errors( |
|
missing_keys, |
|
unexpected_keys, |
|
strict=strict, |
|
ignore_missing_keys=ignore_missing_keys, |
|
ignore_unexpected_keys=ignore_unexpected_keys, |
|
) |
|
return model |
|
|