|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os.path as osp |
|
import cv2 |
|
import numpy as np |
|
|
|
from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset |
|
from dust3r.utils.image import imread_cv2 |
|
|
|
|
|
class ScanNetpp(BaseStereoViewDataset): |
|
def __init__(self, *args, ROOT, **kwargs): |
|
self.ROOT = ROOT |
|
super().__init__(*args, **kwargs) |
|
assert self.split == 'train' |
|
self.loaded_data = self._load_data() |
|
|
|
def _load_data(self): |
|
with np.load(osp.join(self.ROOT, 'all_metadata.npz')) as data: |
|
self.scenes = data['scenes'] |
|
self.sceneids = data['sceneids'] |
|
self.images = data['images'] |
|
self.intrinsics = data['intrinsics'].astype(np.float32) |
|
self.trajectories = data['trajectories'].astype(np.float32) |
|
self.pairs = data['pairs'][:, :2].astype(int) |
|
|
|
def __len__(self): |
|
return len(self.pairs) |
|
|
|
def _get_views(self, idx, resolution, rng): |
|
|
|
image_idx1, image_idx2 = self.pairs[idx] |
|
|
|
views = [] |
|
for view_idx in [image_idx1, image_idx2]: |
|
scene_id = self.sceneids[view_idx] |
|
scene_dir = osp.join(self.ROOT, self.scenes[scene_id]) |
|
|
|
intrinsics = self.intrinsics[view_idx] |
|
camera_pose = self.trajectories[view_idx] |
|
basename = self.images[view_idx] |
|
|
|
|
|
rgb_image = imread_cv2(osp.join(scene_dir, 'images', basename + '.jpg')) |
|
|
|
depthmap = imread_cv2(osp.join(scene_dir, 'depth', basename + '.png'), cv2.IMREAD_UNCHANGED) |
|
depthmap = depthmap.astype(np.float32) / 1000 |
|
depthmap[~np.isfinite(depthmap)] = 0 |
|
|
|
rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary( |
|
rgb_image, depthmap, intrinsics, resolution, rng=rng, info=view_idx) |
|
|
|
views.append(dict( |
|
img=rgb_image, |
|
depthmap=depthmap.astype(np.float32), |
|
camera_pose=camera_pose.astype(np.float32), |
|
camera_intrinsics=intrinsics.astype(np.float32), |
|
dataset='ScanNet++', |
|
label=self.scenes[scene_id] + '_' + basename, |
|
instance=f'{str(idx)}_{str(view_idx)}', |
|
)) |
|
return views |
|
|
|
|
|
if __name__ == "__main__": |
|
from dust3r.datasets.base.base_stereo_view_dataset import view_name |
|
from dust3r.viz import SceneViz, auto_cam_size |
|
from dust3r.utils.image import rgb |
|
|
|
dataset = ScanNetpp(split='train', ROOT="data/scannetpp_processed", resolution=224, aug_crop=16) |
|
|
|
for idx in np.random.permutation(len(dataset)): |
|
views = dataset[idx] |
|
assert len(views) == 2 |
|
print(view_name(views[0]), view_name(views[1])) |
|
viz = SceneViz() |
|
poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]] |
|
cam_size = max(auto_cam_size(poses), 0.001) |
|
for view_idx in [0, 1]: |
|
pts3d = views[view_idx]['pts3d'] |
|
valid_mask = views[view_idx]['valid_mask'] |
|
colors = rgb(views[view_idx]['img']) |
|
viz.add_pointcloud(pts3d, colors, valid_mask) |
|
viz.add_camera(pose_c2w=views[view_idx]['camera_pose'], |
|
focal=views[view_idx]['camera_intrinsics'][0, 0], |
|
color=(idx*255, (1 - idx)*255, 0), |
|
image=colors, |
|
cam_size=cam_size) |
|
viz.show() |
|
|