Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import keras_ocr
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
from PIL import Image
|
5 |
+
hide_streamlit_style = """
|
6 |
+
<style>
|
7 |
+
#MainMenu {visibility: hidden;}
|
8 |
+
footer {visibility: hidden;}
|
9 |
+
.css-1wbqy5l {visibility: hidden;}
|
10 |
+
.css-15zrgzn {visibility: hidden;}
|
11 |
+
.css-klqnuk {visibility: hidden;}
|
12 |
+
.en6cib64 {visibility: hidden;}
|
13 |
+
.css-1u4fkce {visibility: hidden;}
|
14 |
+
.en6cib62 {visibility: hidden;}
|
15 |
+
|
16 |
+
.css-19rxjzo, .ef3psqc11 {
|
17 |
+
background-color: purple;
|
18 |
+
text-color: white;
|
19 |
+
}
|
20 |
+
|
21 |
+
div.stButton > button:first-child {
|
22 |
+
background-color: darkgreen;
|
23 |
+
text-weight: bold;
|
24 |
+
}
|
25 |
+
</style>
|
26 |
+
"""
|
27 |
+
st.markdown("<h1 style='text-align:center;'> Image Text Recognition</h1>", unsafe_allow_html=True)
|
28 |
+
st.markdown("<h4 style='text-align:center;'> By Cyperts</h4>", unsafe_allow_html=True)
|
29 |
+
st.markdown("---")
|
30 |
+
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
31 |
+
|
32 |
+
placeholder=st.empty()
|
33 |
+
col1,col2=placeholder.columns(2)
|
34 |
+
col1.image("example.png", width=250)
|
35 |
+
col2.markdown("<p style='text-align:left;'> This is an example result</p>", unsafe_allow_html=True)
|
36 |
+
|
37 |
+
# Read images from folder path to image object
|
38 |
+
st.markdown("<h2>Upload an Image with Text</h2>",unsafe_allow_html=True)
|
39 |
+
uploaded_img= st.file_uploader("Browse File", type=['jpeg','jpg','png'],accept_multiple_files=False)
|
40 |
+
#container2=st.empty()
|
41 |
+
|
42 |
+
def on_click():
|
43 |
+
if uploaded_img is not None:
|
44 |
+
pipeline = keras_ocr.pipeline.Pipeline()
|
45 |
+
print(uploaded_img.name)
|
46 |
+
images = [
|
47 |
+
keras_ocr.tools.read(img) for img in [uploaded_img
|
48 |
+
]]
|
49 |
+
# generate text predictions from the images
|
50 |
+
prediction_groups = pipeline.recognize(images)
|
51 |
+
# plot the text predictions
|
52 |
+
fig, axs = plt.subplots(nrows=len(images), figsize=(10, 20))
|
53 |
+
#for ax, image, predictions in zip(axs, images, prediction_groups):
|
54 |
+
#keras_ocr.tools.drawAnnotations(image=images[0],predictions=prediction_groups[0], ax=axs)
|
55 |
+
keras_ocr.tools.drawAnnotations(image=images[0], predictions=prediction_groups[0], ax=axs )
|
56 |
+
|
57 |
+
columnbelow[0].pyplot(fig)
|
58 |
+
print(images)
|
59 |
+
|
60 |
+
if uploaded_img is not None:
|
61 |
+
btn=st.button("Recognize Text", on_click=on_click)
|
62 |
+
|
63 |
+
belowrecognize=st.empty()
|
64 |
+
columnbelow=belowrecognize.columns(1) #Returns list
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
|