Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +127 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
data_path = "./data/"
|
| 2 |
+
|
| 3 |
+
import pandas as pd
|
| 4 |
+
|
| 5 |
+
# load the csv into motion_capture_data
|
| 6 |
+
|
| 7 |
+
import streamlit as st
|
| 8 |
+
st.title("CyberOrigin Data Visualization")
|
| 9 |
+
dataset_option = st.sidebar.selectbox(
|
| 10 |
+
'Select a dataset:',
|
| 11 |
+
['Fold_towels', 'Pipette', 'Take_the_item', 'Twist_the_tube']
|
| 12 |
+
)
|
| 13 |
+
motion_capture_path = data_path+dataset_option +"/motionCaptureData.csv"
|
| 14 |
+
video_path = data_path+dataset_option+"/video.mp4"
|
| 15 |
+
motion_capture_data = pd.read_csv(motion_capture_path)
|
| 16 |
+
# create a streamlit app that displays the motion capture data
|
| 17 |
+
# and the video data
|
| 18 |
+
st.video(video_path)
|
| 19 |
+
|
| 20 |
+
body_part_names = ['Left Shoulder',
|
| 21 |
+
'Right Upper Arm',
|
| 22 |
+
'Left Lower Leg',
|
| 23 |
+
'Spine1',
|
| 24 |
+
'Right Upper Leg',
|
| 25 |
+
'Spine3',
|
| 26 |
+
'Right Lower Arm',
|
| 27 |
+
'Left Foot',
|
| 28 |
+
'Right Lower Leg',
|
| 29 |
+
'Right Shoulder',
|
| 30 |
+
'Left Hand',
|
| 31 |
+
'Left Upper Leg',
|
| 32 |
+
'Right Foot',
|
| 33 |
+
'Spine',
|
| 34 |
+
'Spine2',
|
| 35 |
+
'Left Lower Arm',
|
| 36 |
+
'Left Toe',
|
| 37 |
+
'Neck',
|
| 38 |
+
'Right Hand',
|
| 39 |
+
'Right Toe',
|
| 40 |
+
'Head',
|
| 41 |
+
'Left Upper Arm',
|
| 42 |
+
'Hips',]
|
| 43 |
+
|
| 44 |
+
motion_capture_x = motion_capture_data[[body_part_name+"_x" for body_part_name in body_part_names]]
|
| 45 |
+
motion_capture_y = motion_capture_data[[body_part_name+"_y" for body_part_name in body_part_names]]
|
| 46 |
+
motion_capture_z = motion_capture_data[[body_part_name+"_z" for body_part_name in body_part_names]]
|
| 47 |
+
|
| 48 |
+
import plotly.graph_objects as go
|
| 49 |
+
import numpy as np
|
| 50 |
+
|
| 51 |
+
# Sample Data Preparation
|
| 52 |
+
data = []
|
| 53 |
+
times = motion_capture_data["timestamp"]
|
| 54 |
+
frames = [go.Frame(
|
| 55 |
+
data=[
|
| 56 |
+
go.Scatter3d(
|
| 57 |
+
x=motion_capture_x.iloc[k],
|
| 58 |
+
y=motion_capture_y.iloc[k],
|
| 59 |
+
z=motion_capture_z.iloc[k],
|
| 60 |
+
mode='markers',
|
| 61 |
+
marker=dict(size=5, color='blue')
|
| 62 |
+
)
|
| 63 |
+
],
|
| 64 |
+
name=str(k)
|
| 65 |
+
) for k in range(len(times))]
|
| 66 |
+
|
| 67 |
+
# Create the initial scatter plot
|
| 68 |
+
initial_scatter = go.Scatter3d(
|
| 69 |
+
x=motion_capture_x.iloc[0],
|
| 70 |
+
y=motion_capture_y.iloc[0],
|
| 71 |
+
z=motion_capture_z.iloc[0],
|
| 72 |
+
mode='markers',
|
| 73 |
+
marker=dict(size=5, color='blue')
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
# Create the layout with slider
|
| 77 |
+
layout = go.Layout(
|
| 78 |
+
title='Motion Capture Visualization',
|
| 79 |
+
updatemenus=[{
|
| 80 |
+
'buttons': [
|
| 81 |
+
{
|
| 82 |
+
'args': [None, {'frame': {'duration': 1, 'redraw': True}, 'fromcurrent': True}],
|
| 83 |
+
'label': 'Play',
|
| 84 |
+
'method': 'animate'
|
| 85 |
+
},
|
| 86 |
+
{
|
| 87 |
+
'args': [[None], {'frame': {'duration': 0, 'redraw': True}, 'mode': 'immediate', 'transition': {'duration': 0}}],
|
| 88 |
+
'label': 'Pause',
|
| 89 |
+
'method': 'animate'
|
| 90 |
+
}
|
| 91 |
+
],
|
| 92 |
+
'direction': 'left',
|
| 93 |
+
'pad': {'r': 10, 't': 87},
|
| 94 |
+
'showactive': True,
|
| 95 |
+
'type': 'buttons',
|
| 96 |
+
'x': 0.1,
|
| 97 |
+
'xanchor': 'right',
|
| 98 |
+
'y': 0,
|
| 99 |
+
'yanchor': 'top'
|
| 100 |
+
}],
|
| 101 |
+
sliders=[{
|
| 102 |
+
'active': 0,
|
| 103 |
+
'steps': [{
|
| 104 |
+
'label': str(k),
|
| 105 |
+
'method': 'animate',
|
| 106 |
+
'args': [
|
| 107 |
+
[str(k)],
|
| 108 |
+
{'mode': 'immediate', 'frame': {'duration': 300, 'redraw': True}, 'transition': {'duration': len(times)/30}}
|
| 109 |
+
]
|
| 110 |
+
} for k in range(len(times))],
|
| 111 |
+
'currentvalue': {
|
| 112 |
+
'prefix': 'Time: ',
|
| 113 |
+
'visible': True,
|
| 114 |
+
'xanchor': 'right'
|
| 115 |
+
},
|
| 116 |
+
'pad': {'b': 10},
|
| 117 |
+
'len': 0.9,
|
| 118 |
+
'x': 0.1,
|
| 119 |
+
'y': 0,
|
| 120 |
+
}]
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
# Create the figure
|
| 124 |
+
fig = go.Figure(data=[initial_scatter], frames=frames, layout=layout)
|
| 125 |
+
|
| 126 |
+
# Display the figure in the streamlit app
|
| 127 |
+
st.plotly_chart(fig)
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
pandas
|
| 3 |
+
plotly
|
| 4 |
+
numpy
|