Spaces:
Runtime error
Runtime error
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") | |
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") | |
# Let's chat for 5 lines | |
for step in range(5): | |
# encode the new user input, add the eos_token and return a tensor in Pytorch | |
new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') | |
# append the new user input tokens to the chat history | |
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids | |
# generated a response while limiting the total chat history to 1000 tokens, | |
chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) | |
# pretty print last ouput tokens from bot | |
print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) | |