Spaces:
Running
Running
import json | |
from llama_index.llms.openai_like import OpenAILike | |
from llama_index.core.llms import ChatMessage # , MessageRole | |
from llama_index.core import ChatPromptTemplate | |
from util import mylogger | |
from util import checkAPI | |
from icecream import ic | |
logger = mylogger(__name__, "%(asctime)s:%(filename)s:%(levelname)s:%(message)s") | |
## define templates | |
### topic,input | |
EXTRACT_INFO = ChatPromptTemplate( | |
[ | |
ChatMessage( | |
role="system", | |
content="You are a content extractor. You never paraphrase; you only reduce content at the sentence level. Your mission is to extract {to_extract} from user input. Reformat the extraction in a clean style if extraction looks messey.", | |
), | |
ChatMessage(role="user", content="{input}"), | |
] | |
) | |
### input | |
SIMPLIFY_MD = ChatPromptTemplate( | |
[ | |
ChatMessage( | |
role="system", | |
content="You are an AI text converter alternative to pandoc. Your mission is to convert the input content into markdown. Regarding styles, only keep headers, lists and links, and remove other styles.", | |
), | |
ChatMessage(role="user", content="{input}"), | |
] | |
) | |
### template, content | |
JSON_API = ChatPromptTemplate( | |
[ | |
ChatMessage( | |
role="system", | |
content="You are a JSON API. Your mission is to convert user input into a valid and complete JSON object STRICTLY in this template: {template}. The output should be completely a plain json without nested structure. Never summerize, paraphrase or do anything else, just extract the information from the input and fill in the template.", | |
), | |
ChatMessage(role="user", content="{content}"), | |
] | |
) | |
keys_to_template = lambda keys: json.dumps(dict().fromkeys(keys, "")) | |
### resume, jd | |
LETTER_COMPOSE = ChatPromptTemplate( | |
[ | |
ChatMessage( | |
role="system", | |
content="""You are a thoughtful wordsmith. You have a deep understanding of the scoiety and the bussiness world. You are always willing to help people find a job. Your mission is to write a compelling cover letter tailored for user to get the specified job, based on the provided RESUME and JOB_DESCRIPTION. Your writing is based on ground truth and you never fabricate anything you are unsure about. | |
Before officially write the letter, think step by step. First, list what makes a perfect cover letter in general, and in order to write a perfect cover letter, what key points do you have to learn from the RESUME and JOB_DESCRIPTION. Then, carefully analyze the given RESUME and JOB_DESCRIPTION, take a deep breath and propose 3 best tactics to convince recruiter believe the applicant fit for the role. Ensure your thoughts are express clearly and then write the complete cover letter.""", | |
), | |
ChatMessage( | |
role="user", | |
content="<RESUME>\n{resume}\n</RESUME>\n\n<JOB_DESCRIPTION>\n{jd}</JOB_DESCRIPTION>\n<ANALYSIS_REPORT>", | |
), | |
] | |
) | |
## basic func | |
## tasks | |
class TaskAI(OpenAILike): | |
is_debug = False | |
def __init__(self, api: dict[str, str], is_debug=False, **kwargs): | |
log = logger.info | |
def guess_window_size(model=api["model"]): | |
_mid = model.lower() | |
windows: dict = { | |
8000: ["gemma", "8k"], | |
16000: ["16k"], | |
32000: ["mistral", "mixtral", "32k"], | |
} | |
window_size = 3900 | |
for ws, names in windows.items(): | |
if any([n in _mid for n in names]): | |
window_size = ws | |
log(f"use context window size: {window_size} for {model}") | |
return window_size | |
checkAPI(api_base=api["base"], api_key=api["key"]) | |
super().__init__( | |
api_base=api["base"], | |
api_key=api["key"], | |
model=api["model"], | |
is_chat_model=True, | |
context_window=guess_window_size(), | |
**kwargs, | |
) | |
self.is_debug = is_debug | |
def _debug_print_msg(self, msg): | |
if not self.is_debug: | |
return | |
for m in msg: | |
print(m.content) | |
def jd_preprocess(self, input: str): | |
msg = EXTRACT_INFO.format_messages( | |
to_extract="the job description part", input=input | |
) | |
return self.stream_chat(msg) | |
def cv_preprocess(self, input: str): | |
msg = SIMPLIFY_MD.format_messages(input=input) | |
# if self.is_debug: logger.info(msg) | |
return self.stream_chat(msg) | |
def compose_letter_CoT(self, resume: str, jd: str): | |
msg = LETTER_COMPOSE.format_messages(resume=resume, jd=jd) | |
self._debug_print_msg(msg) | |
return self.stream_chat(msg) | |
def get_jobapp_meta(self, JD, CV): | |
meta_JD = self.chat( | |
JSON_API.format_messages( | |
template=keys_to_template(["companyFullName", "jobTitle"]), content=JD | |
) | |
).message.content | |
# yield meta_JD | |
meta_CV = self.chat( | |
JSON_API.format_messages( | |
template=keys_to_template( | |
["applicantFullName", "applicantContactInformation"] | |
), | |
content=CV, | |
) | |
).message.content | |
# yield meta_JD+'\n'+meta_CV | |
try: | |
meta_JD = json.loads(meta_JD.strip()) | |
meta_CV = json.loads(meta_CV.strip()) | |
except Exception as e: | |
ic(e) | |
raise ValueError( | |
f"AI didn't return a valid JSON string. Try again or consider a better model for CheapAI. \n{meta_JD}\n{meta_CV}" | |
) | |
meta = dict() | |
meta.update(meta_JD) | |
meta.update(meta_CV) | |
yield json.dumps(meta, indent=2) | |
def purify_letter(self, full_text): | |
return self.stream_chat( | |
EXTRACT_INFO.format_messages( | |
to_extract="the cover letter section starting from 'Dear Hiring Manager' or similar to 'Sincerely,' or similar", | |
input=full_text, | |
) | |
) | |