Spaces:
Sleeping
Sleeping
Update ai_service.py
Browse files- ai_service.py +77 -82
ai_service.py
CHANGED
|
@@ -1,82 +1,77 @@
|
|
| 1 |
-
# ai_service.py
|
| 2 |
-
import
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
_LLM
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
prompt =
|
| 62 |
-
|
| 63 |
-
try:
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
if user_prompt in text:
|
| 79 |
-
text = text.split(user_prompt, 1)[-1].strip()
|
| 80 |
-
return (text or "(沒有產生內容)")[:1200]
|
| 81 |
-
except Exception as e:
|
| 82 |
-
return f"AI 產生發生錯誤:{e}"
|
|
|
|
| 1 |
+
# ai_service.py
|
| 2 |
+
from config import (
|
| 3 |
+
HUGGING_FACE_TOKEN, LLM_MODEL, LLM_MAX_NEW_TOKENS,
|
| 4 |
+
LLM_TOP_K, LLM_TEMPERATURE
|
| 5 |
+
)
|
| 6 |
+
|
| 7 |
+
# 用於延遲載入語言模型的字典,現在只儲存 pipeline 物件
|
| 8 |
+
_LLM = {"loaded": False, "ok": False, "err": None, "model": None}
|
| 9 |
+
|
| 10 |
+
def _ensure_llm():
|
| 11 |
+
"""在首次使用時載入 AI 模型。"""
|
| 12 |
+
if _LLM["loaded"]:
|
| 13 |
+
return _LLM["ok"], _LLM["err"]
|
| 14 |
+
_LLM["loaded"] = True
|
| 15 |
+
|
| 16 |
+
# 檢查 HF Token 是否存在
|
| 17 |
+
if not HUGGING_FACE_TOKEN:
|
| 18 |
+
_LLM["err"] = "HUGGING_FACE_TOKEN secret not set in deployment environment."
|
| 19 |
+
_LLM["ok"] = False
|
| 20 |
+
return False, _LLM["err"]
|
| 21 |
+
|
| 22 |
+
try:
|
| 23 |
+
import torch
|
| 24 |
+
from transformers import pipeline
|
| 25 |
+
from huggingface_hub import login
|
| 26 |
+
|
| 27 |
+
# 使用 Token 登入
|
| 28 |
+
login(token=HUGGING_FACE_TOKEN)
|
| 29 |
+
|
| 30 |
+
# 建立 text-generation pipeline
|
| 31 |
+
# device_map="auto" 會自動使用 GPU (如果可用)
|
| 32 |
+
pipe = pipeline(
|
| 33 |
+
"text-generation",
|
| 34 |
+
model=LLM_MODEL,
|
| 35 |
+
torch_dtype=torch.bfloat16,
|
| 36 |
+
device_map="auto",
|
| 37 |
+
)
|
| 38 |
+
_LLM.update({"ok": True, "model": pipe})
|
| 39 |
+
return True, None
|
| 40 |
+
except Exception as e:
|
| 41 |
+
# 如果 Token 無效或未同意模型條款,會在此處拋出錯誤
|
| 42 |
+
_LLM["err"] = f"{e}"
|
| 43 |
+
_LLM["ok"] = False
|
| 44 |
+
return False, _LLM["err"]
|
| 45 |
+
|
| 46 |
+
def generate_ai_text(user_prompt: str) -> str:
|
| 47 |
+
"""使用已載入的 Gemma 模型生成文字回應。"""
|
| 48 |
+
ok, err = _ensure_llm()
|
| 49 |
+
if not ok:
|
| 50 |
+
return (
|
| 51 |
+
"🤖 AI 模型無法使用。\n"
|
| 52 |
+
"可能原因:\n"
|
| 53 |
+
"1. 未在 Hugging Face Spaces 設定名為 HUGGING_FACE_TOKEN 的 Secret。\n"
|
| 54 |
+
"2. 尚未在 Hugging Face 網站上同意 gemma-2b-it 模型的使用條款。\n"
|
| 55 |
+
f"\n詳細錯誤:{err}"
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
pipe = _LLM["model"]
|
| 59 |
+
|
| 60 |
+
# 建立符合 Gemma 指令微調模型的 Prompt 格式
|
| 61 |
+
prompt = f"<start_of_turn>user\n你是一個多功能的台灣在地LINE助理,請用繁體中文簡潔有力地回答問題。{user_prompt}<end_of_turn>\n<start_of_turn>model\n"
|
| 62 |
+
|
| 63 |
+
try:
|
| 64 |
+
outputs = pipe(
|
| 65 |
+
prompt,
|
| 66 |
+
max_new_tokens=LLM_MAX_NEW_TOKENS,
|
| 67 |
+
do_sample=True,
|
| 68 |
+
temperature=LLM_TEMPERATURE,
|
| 69 |
+
top_k=LLM_TOP_K,
|
| 70 |
+
top_p=0.95,
|
| 71 |
+
)
|
| 72 |
+
# 從 pipeline 的輸出中解析出模型生成的部分
|
| 73 |
+
full_text = outputs[0]["generated_text"]
|
| 74 |
+
response = full_text.split("<start_of_turn>model\n")[-1]
|
| 75 |
+
return response.strip() or "(AI 沒有產生任何內容)"
|
| 76 |
+
except Exception as e:
|
| 77 |
+
return f"AI 產生內容時發生錯誤:{e}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|