turn-the-cam-anonymous's picture
adding CLIP taming
1ed7deb
import collections
import os
import tarfile
import urllib
import zipfile
from pathlib import Path
import numpy as np
import torch
from taming.data.helper_types import Annotation
from torch._six import string_classes
from torch.utils.data._utils.collate import np_str_obj_array_pattern, default_collate_err_msg_format
from tqdm import tqdm
def unpack(path):
if path.endswith("tar.gz"):
with tarfile.open(path, "r:gz") as tar:
tar.extractall(path=os.path.split(path)[0])
elif path.endswith("tar"):
with tarfile.open(path, "r:") as tar:
tar.extractall(path=os.path.split(path)[0])
elif path.endswith("zip"):
with zipfile.ZipFile(path, "r") as f:
f.extractall(path=os.path.split(path)[0])
else:
raise NotImplementedError(
"Unknown file extension: {}".format(os.path.splitext(path)[1])
)
def reporthook(bar):
"""tqdm progress bar for downloads."""
def hook(b=1, bsize=1, tsize=None):
if tsize is not None:
bar.total = tsize
bar.update(b * bsize - bar.n)
return hook
def get_root(name):
base = "data/"
root = os.path.join(base, name)
os.makedirs(root, exist_ok=True)
return root
def is_prepared(root):
return Path(root).joinpath(".ready").exists()
def mark_prepared(root):
Path(root).joinpath(".ready").touch()
def prompt_download(file_, source, target_dir, content_dir=None):
targetpath = os.path.join(target_dir, file_)
while not os.path.exists(targetpath):
if content_dir is not None and os.path.exists(
os.path.join(target_dir, content_dir)
):
break
print(
"Please download '{}' from '{}' to '{}'.".format(file_, source, targetpath)
)
if content_dir is not None:
print(
"Or place its content into '{}'.".format(
os.path.join(target_dir, content_dir)
)
)
input("Press Enter when done...")
return targetpath
def download_url(file_, url, target_dir):
targetpath = os.path.join(target_dir, file_)
os.makedirs(target_dir, exist_ok=True)
with tqdm(
unit="B", unit_scale=True, unit_divisor=1024, miniters=1, desc=file_
) as bar:
urllib.request.urlretrieve(url, targetpath, reporthook=reporthook(bar))
return targetpath
def download_urls(urls, target_dir):
paths = dict()
for fname, url in urls.items():
outpath = download_url(fname, url, target_dir)
paths[fname] = outpath
return paths
def quadratic_crop(x, bbox, alpha=1.0):
"""bbox is xmin, ymin, xmax, ymax"""
im_h, im_w = x.shape[:2]
bbox = np.array(bbox, dtype=np.float32)
bbox = np.clip(bbox, 0, max(im_h, im_w))
center = 0.5 * (bbox[0] + bbox[2]), 0.5 * (bbox[1] + bbox[3])
w = bbox[2] - bbox[0]
h = bbox[3] - bbox[1]
l = int(alpha * max(w, h))
l = max(l, 2)
required_padding = -1 * min(
center[0] - l, center[1] - l, im_w - (center[0] + l), im_h - (center[1] + l)
)
required_padding = int(np.ceil(required_padding))
if required_padding > 0:
padding = [
[required_padding, required_padding],
[required_padding, required_padding],
]
padding += [[0, 0]] * (len(x.shape) - 2)
x = np.pad(x, padding, "reflect")
center = center[0] + required_padding, center[1] + required_padding
xmin = int(center[0] - l / 2)
ymin = int(center[1] - l / 2)
return np.array(x[ymin : ymin + l, xmin : xmin + l, ...])
def custom_collate(batch):
r"""source: pytorch 1.9.0, only one modification to original code """
elem = batch[0]
elem_type = type(elem)
if isinstance(elem, torch.Tensor):
out = None
if torch.utils.data.get_worker_info() is not None:
# If we're in a background process, concatenate directly into a
# shared memory tensor to avoid an extra copy
numel = sum([x.numel() for x in batch])
storage = elem.storage()._new_shared(numel)
out = elem.new(storage)
return torch.stack(batch, 0, out=out)
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
and elem_type.__name__ != 'string_':
if elem_type.__name__ == 'ndarray' or elem_type.__name__ == 'memmap':
# array of string classes and object
if np_str_obj_array_pattern.search(elem.dtype.str) is not None:
raise TypeError(default_collate_err_msg_format.format(elem.dtype))
return custom_collate([torch.as_tensor(b) for b in batch])
elif elem.shape == (): # scalars
return torch.as_tensor(batch)
elif isinstance(elem, float):
return torch.tensor(batch, dtype=torch.float64)
elif isinstance(elem, int):
return torch.tensor(batch)
elif isinstance(elem, string_classes):
return batch
elif isinstance(elem, collections.abc.Mapping):
return {key: custom_collate([d[key] for d in batch]) for key in elem}
elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple
return elem_type(*(custom_collate(samples) for samples in zip(*batch)))
if isinstance(elem, collections.abc.Sequence) and isinstance(elem[0], Annotation): # added
return batch # added
elif isinstance(elem, collections.abc.Sequence):
# check to make sure that the elements in batch have consistent size
it = iter(batch)
elem_size = len(next(it))
if not all(len(elem) == elem_size for elem in it):
raise RuntimeError('each element in list of batch should be of equal size')
transposed = zip(*batch)
return [custom_collate(samples) for samples in transposed]
raise TypeError(default_collate_err_msg_format.format(elem_type))