zero123-live / taming-transformers /configs /coco_scene_images_transformer.yaml
turn-the-cam-anonymous's picture
adding CLIP taming
1ed7deb
model:
base_learning_rate: 4.5e-06
target: taming.models.cond_transformer.Net2NetTransformer
params:
cond_stage_key: objects_bbox
transformer_config:
target: taming.modules.transformer.mingpt.GPT
params:
vocab_size: 8192
block_size: 348 # = 256 + 92 = dim(vqgan_latent_space,16x16) + dim(conditional_builder.embedding_dim)
n_layer: 40
n_head: 16
n_embd: 1408
embd_pdrop: 0.1
resid_pdrop: 0.1
attn_pdrop: 0.1
first_stage_config:
target: taming.models.vqgan.VQModel
params:
ckpt_path: /path/to/coco_epoch117.ckpt # https://heibox.uni-heidelberg.de/f/78dea9589974474c97c1/
embed_dim: 256
n_embed: 8192
ddconfig:
double_z: false
z_channels: 256
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 1
- 2
- 2
- 4
num_res_blocks: 2
attn_resolutions:
- 16
dropout: 0.0
lossconfig:
target: taming.modules.losses.DummyLoss
cond_stage_config:
target: taming.models.dummy_cond_stage.DummyCondStage
params:
conditional_key: objects_bbox
data:
target: main.DataModuleFromConfig
params:
batch_size: 6
train:
target: taming.data.annotated_objects_coco.AnnotatedObjectsCoco
params:
data_path: data/coco_annotations_100 # substitute with path to full dataset
split: train
keys: [image, objects_bbox, file_name, annotations]
no_tokens: 8192
target_image_size: 256
min_object_area: 0.00001
min_objects_per_image: 2
max_objects_per_image: 30
crop_method: random-1d
random_flip: true
use_group_parameter: true
encode_crop: true
validation:
target: taming.data.annotated_objects_coco.AnnotatedObjectsCoco
params:
data_path: data/coco_annotations_100 # substitute with path to full dataset
split: validation
keys: [image, objects_bbox, file_name, annotations]
no_tokens: 8192
target_image_size: 256
min_object_area: 0.00001
min_objects_per_image: 2
max_objects_per_image: 30
crop_method: center
random_flip: false
use_group_parameter: true
encode_crop: true