Spaces:
Build error
Build error
import math | |
import random | |
import warnings | |
from itertools import cycle | |
from typing import List, Optional, Tuple, Callable | |
from PIL import Image as pil_image, ImageDraw as pil_img_draw, ImageFont | |
from more_itertools.recipes import grouper | |
from taming.data.conditional_builder.utils import COLOR_PALETTE, WHITE, GRAY_75, BLACK, FULL_CROP, filter_annotations, \ | |
additional_parameters_string, horizontally_flip_bbox, pad_list, get_circle_size, get_plot_font_size, \ | |
absolute_bbox, rescale_annotations | |
from taming.data.helper_types import BoundingBox, Annotation | |
from taming.data.image_transforms import convert_pil_to_tensor | |
from torch import LongTensor, Tensor | |
class ObjectsCenterPointsConditionalBuilder: | |
def __init__(self, no_object_classes: int, no_max_objects: int, no_tokens: int, encode_crop: bool, | |
use_group_parameter: bool, use_additional_parameters: bool): | |
self.no_object_classes = no_object_classes | |
self.no_max_objects = no_max_objects | |
self.no_tokens = no_tokens | |
self.encode_crop = encode_crop | |
self.no_sections = int(math.sqrt(self.no_tokens)) | |
self.use_group_parameter = use_group_parameter | |
self.use_additional_parameters = use_additional_parameters | |
def none(self) -> int: | |
return self.no_tokens - 1 | |
def object_descriptor_length(self) -> int: | |
return 2 | |
def embedding_dim(self) -> int: | |
extra_length = 2 if self.encode_crop else 0 | |
return self.no_max_objects * self.object_descriptor_length + extra_length | |
def tokenize_coordinates(self, x: float, y: float) -> int: | |
""" | |
Express 2d coordinates with one number. | |
Example: assume self.no_tokens = 16, then no_sections = 4: | |
0 0 0 0 | |
0 0 # 0 | |
0 0 0 0 | |
0 0 0 x | |
Then the # position corresponds to token 6, the x position to token 15. | |
@param x: float in [0, 1] | |
@param y: float in [0, 1] | |
@return: discrete tokenized coordinate | |
""" | |
x_discrete = int(round(x * (self.no_sections - 1))) | |
y_discrete = int(round(y * (self.no_sections - 1))) | |
return y_discrete * self.no_sections + x_discrete | |
def coordinates_from_token(self, token: int) -> (float, float): | |
x = token % self.no_sections | |
y = token // self.no_sections | |
return x / (self.no_sections - 1), y / (self.no_sections - 1) | |
def bbox_from_token_pair(self, token1: int, token2: int) -> BoundingBox: | |
x0, y0 = self.coordinates_from_token(token1) | |
x1, y1 = self.coordinates_from_token(token2) | |
return x0, y0, x1 - x0, y1 - y0 | |
def token_pair_from_bbox(self, bbox: BoundingBox) -> Tuple[int, int]: | |
return self.tokenize_coordinates(bbox[0], bbox[1]), \ | |
self.tokenize_coordinates(bbox[0] + bbox[2], bbox[1] + bbox[3]) | |
def inverse_build(self, conditional: LongTensor) \ | |
-> Tuple[List[Tuple[int, Tuple[float, float]]], Optional[BoundingBox]]: | |
conditional_list = conditional.tolist() | |
crop_coordinates = None | |
if self.encode_crop: | |
crop_coordinates = self.bbox_from_token_pair(conditional_list[-2], conditional_list[-1]) | |
conditional_list = conditional_list[:-2] | |
table_of_content = grouper(conditional_list, self.object_descriptor_length) | |
assert conditional.shape[0] == self.embedding_dim | |
return [ | |
(object_tuple[0], self.coordinates_from_token(object_tuple[1])) | |
for object_tuple in table_of_content if object_tuple[0] != self.none | |
], crop_coordinates | |
def plot(self, conditional: LongTensor, label_for_category_no: Callable[[int], str], figure_size: Tuple[int, int], | |
line_width: int = 3, font_size: Optional[int] = None) -> Tensor: | |
plot = pil_image.new('RGB', figure_size, WHITE) | |
draw = pil_img_draw.Draw(plot) | |
circle_size = get_circle_size(figure_size) | |
font = ImageFont.truetype('/usr/share/fonts/truetype/lato/Lato-Regular.ttf', | |
size=get_plot_font_size(font_size, figure_size)) | |
width, height = plot.size | |
description, crop_coordinates = self.inverse_build(conditional) | |
for (representation, (x, y)), color in zip(description, cycle(COLOR_PALETTE)): | |
x_abs, y_abs = x * width, y * height | |
ann = self.representation_to_annotation(representation) | |
label = label_for_category_no(ann.category_no) + ' ' + additional_parameters_string(ann) | |
ellipse_bbox = [x_abs - circle_size, y_abs - circle_size, x_abs + circle_size, y_abs + circle_size] | |
draw.ellipse(ellipse_bbox, fill=color, width=0) | |
draw.text((x_abs, y_abs), label, anchor='md', fill=BLACK, font=font) | |
if crop_coordinates is not None: | |
draw.rectangle(absolute_bbox(crop_coordinates, width, height), outline=GRAY_75, width=line_width) | |
return convert_pil_to_tensor(plot) / 127.5 - 1. | |
def object_representation(self, annotation: Annotation) -> int: | |
modifier = 0 | |
if self.use_group_parameter: | |
modifier |= 1 * (annotation.is_group_of is True) | |
if self.use_additional_parameters: | |
modifier |= 2 * (annotation.is_occluded is True) | |
modifier |= 4 * (annotation.is_depiction is True) | |
modifier |= 8 * (annotation.is_inside is True) | |
return annotation.category_no + self.no_object_classes * modifier | |
def representation_to_annotation(self, representation: int) -> Annotation: | |
category_no = representation % self.no_object_classes | |
modifier = representation // self.no_object_classes | |
# noinspection PyTypeChecker | |
return Annotation( | |
area=None, image_id=None, bbox=None, category_id=None, id=None, source=None, confidence=None, | |
category_no=category_no, | |
is_group_of=bool((modifier & 1) * self.use_group_parameter), | |
is_occluded=bool((modifier & 2) * self.use_additional_parameters), | |
is_depiction=bool((modifier & 4) * self.use_additional_parameters), | |
is_inside=bool((modifier & 8) * self.use_additional_parameters) | |
) | |
def _crop_encoder(self, crop_coordinates: BoundingBox) -> List[int]: | |
return list(self.token_pair_from_bbox(crop_coordinates)) | |
def _make_object_descriptors(self, annotations: List[Annotation]) -> List[Tuple[int, ...]]: | |
object_tuples = [ | |
(self.object_representation(a), | |
self.tokenize_coordinates(a.bbox[0] + a.bbox[2] / 2, a.bbox[1] + a.bbox[3] / 2)) | |
for a in annotations | |
] | |
empty_tuple = (self.none, self.none) | |
object_tuples = pad_list(object_tuples, empty_tuple, self.no_max_objects) | |
return object_tuples | |
def build(self, annotations: List, crop_coordinates: Optional[BoundingBox] = None, horizontal_flip: bool = False) \ | |
-> LongTensor: | |
if len(annotations) == 0: | |
warnings.warn('Did not receive any annotations.') | |
if len(annotations) > self.no_max_objects: | |
warnings.warn('Received more annotations than allowed.') | |
annotations = annotations[:self.no_max_objects] | |
if not crop_coordinates: | |
crop_coordinates = FULL_CROP | |
random.shuffle(annotations) | |
annotations = filter_annotations(annotations, crop_coordinates) | |
if self.encode_crop: | |
annotations = rescale_annotations(annotations, FULL_CROP, horizontal_flip) | |
if horizontal_flip: | |
crop_coordinates = horizontally_flip_bbox(crop_coordinates) | |
extra = self._crop_encoder(crop_coordinates) | |
else: | |
annotations = rescale_annotations(annotations, crop_coordinates, horizontal_flip) | |
extra = [] | |
object_tuples = self._make_object_descriptors(annotations) | |
flattened = [token for tuple_ in object_tuples for token in tuple_] + extra | |
assert len(flattened) == self.embedding_dim | |
assert all(0 <= value < self.no_tokens for value in flattened) | |
return LongTensor(flattened) | |