zero123-live / taming-transformers /taming /data /annotated_objects_open_images.py
turn-the-cam-anonymous's picture
adding CLIP taming
1ed7deb
raw
history blame
6.24 kB
from collections import defaultdict
from csv import DictReader, reader as TupleReader
from pathlib import Path
from typing import Dict, List, Any
import warnings
from taming.data.annotated_objects_dataset import AnnotatedObjectsDataset
from taming.data.helper_types import Annotation, Category
from tqdm import tqdm
OPEN_IMAGES_STRUCTURE = {
'train': {
'top_level': '',
'class_descriptions': 'class-descriptions-boxable.csv',
'annotations': 'oidv6-train-annotations-bbox.csv',
'file_list': 'train-images-boxable.csv',
'files': 'train'
},
'validation': {
'top_level': '',
'class_descriptions': 'class-descriptions-boxable.csv',
'annotations': 'validation-annotations-bbox.csv',
'file_list': 'validation-images.csv',
'files': 'validation'
},
'test': {
'top_level': '',
'class_descriptions': 'class-descriptions-boxable.csv',
'annotations': 'test-annotations-bbox.csv',
'file_list': 'test-images.csv',
'files': 'test'
}
}
def load_annotations(descriptor_path: Path, min_object_area: float, category_mapping: Dict[str, str],
category_no_for_id: Dict[str, int]) -> Dict[str, List[Annotation]]:
annotations: Dict[str, List[Annotation]] = defaultdict(list)
with open(descriptor_path) as file:
reader = DictReader(file)
for i, row in tqdm(enumerate(reader), total=14620000, desc='Loading OpenImages annotations'):
width = float(row['XMax']) - float(row['XMin'])
height = float(row['YMax']) - float(row['YMin'])
area = width * height
category_id = row['LabelName']
if category_id in category_mapping:
category_id = category_mapping[category_id]
if area >= min_object_area and category_id in category_no_for_id:
annotations[row['ImageID']].append(
Annotation(
id=i,
image_id=row['ImageID'],
source=row['Source'],
category_id=category_id,
category_no=category_no_for_id[category_id],
confidence=float(row['Confidence']),
bbox=(float(row['XMin']), float(row['YMin']), width, height),
area=area,
is_occluded=bool(int(row['IsOccluded'])),
is_truncated=bool(int(row['IsTruncated'])),
is_group_of=bool(int(row['IsGroupOf'])),
is_depiction=bool(int(row['IsDepiction'])),
is_inside=bool(int(row['IsInside']))
)
)
if 'train' in str(descriptor_path) and i < 14000000:
warnings.warn(f'Running with subset of Open Images. Train dataset has length [{len(annotations)}].')
return dict(annotations)
def load_image_ids(csv_path: Path) -> List[str]:
with open(csv_path) as file:
reader = DictReader(file)
return [row['image_name'] for row in reader]
def load_categories(csv_path: Path) -> Dict[str, Category]:
with open(csv_path) as file:
reader = TupleReader(file)
return {row[0]: Category(id=row[0], name=row[1], super_category=None) for row in reader}
class AnnotatedObjectsOpenImages(AnnotatedObjectsDataset):
def __init__(self, use_additional_parameters: bool, **kwargs):
"""
@param data_path: is the path to the following folder structure:
open_images/
β”‚ oidv6-train-annotations-bbox.csv
β”œβ”€β”€ class-descriptions-boxable.csv
β”œβ”€β”€ oidv6-train-annotations-bbox.csv
β”œβ”€β”€ test
β”‚ β”œβ”€β”€ 000026e7ee790996.jpg
β”‚ β”œβ”€β”€ 000062a39995e348.jpg
β”‚ └── ...
β”œβ”€β”€ test-annotations-bbox.csv
β”œβ”€β”€ test-images.csv
β”œβ”€β”€ train
β”‚ β”œβ”€β”€ 000002b66c9c498e.jpg
β”‚ β”œβ”€β”€ 000002b97e5471a0.jpg
β”‚ └── ...
β”œβ”€β”€ train-images-boxable.csv
β”œβ”€β”€ validation
β”‚ β”œβ”€β”€ 0001eeaf4aed83f9.jpg
β”‚ β”œβ”€β”€ 0004886b7d043cfd.jpg
β”‚ └── ...
β”œβ”€β”€ validation-annotations-bbox.csv
└── validation-images.csv
@param: split: one of 'train', 'validation' or 'test'
@param: desired image size (returns square images)
"""
super().__init__(**kwargs)
self.use_additional_parameters = use_additional_parameters
self.categories = load_categories(self.paths['class_descriptions'])
self.filter_categories()
self.setup_category_id_and_number()
self.image_descriptions = {}
annotations = load_annotations(self.paths['annotations'], self.min_object_area, self.category_mapping,
self.category_number)
self.annotations = self.filter_object_number(annotations, self.min_object_area, self.min_objects_per_image,
self.max_objects_per_image)
self.image_ids = list(self.annotations.keys())
self.clean_up_annotations_and_image_descriptions()
def get_path_structure(self) -> Dict[str, str]:
if self.split not in OPEN_IMAGES_STRUCTURE:
raise ValueError(f'Split [{self.split} does not exist for Open Images data.]')
return OPEN_IMAGES_STRUCTURE[self.split]
def get_image_path(self, image_id: str) -> Path:
return self.paths['files'].joinpath(f'{image_id:0>16}.jpg')
def get_image_description(self, image_id: str) -> Dict[str, Any]:
image_path = self.get_image_path(image_id)
return {'file_path': str(image_path), 'file_name': image_path.name}