video-detector / app.py
cvdetectors's picture
Create app.py
8a47c75 verified
import gradio as gr
import torch
import cv2
import tempfile
import numpy as np
from PIL import Image
from transformers import AutoImageProcessor, AutoModelForImageClassification
# Load the deepfake detection model
processor = AutoImageProcessor.from_pretrained("Smogy/SMOGY-Ai-images-detector")
model = AutoModelForImageClassification.from_pretrained("Smogy/SMOGY-Ai-images-detector")
# Load face detection cascade
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
def detect_deepfake_image(image: Image.Image) -> str:
"""Detect deepfake in a single image"""
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
probs = torch.softmax(outputs.logits, dim=1)
idx = probs.argmax().item()
label = model.config.id2label[idx]
conf = probs[0, idx].item()
return f"The image is {label} with confidence {conf:.2f}"
def process_video(video_path: str) -> str:
"""Process video frame by frame and add detection annotations"""
# Open input video
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError("Could not open video file")
# Get video properties
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Create temporary output file
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file:
output_path = temp_file.name
# Initialize video writer
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
# Process each frame
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Convert to grayscale for face detection
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.1, 4)
# Process each detected face
for (x, y, w, h) in faces:
# Extract face ROI
face_img = frame[y:y+h, x:x+w]
# Convert to PIL Image and process
face_pil = Image.fromarray(cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB))
inputs = processor(images=face_pil, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
probs = torch.softmax(outputs.logits, dim=1)
idx = probs.argmax().item()
label = model.config.id2label[idx]
conf = probs[0, idx].item()
# Draw bounding box and label
color = (0, 255, 0) if label == 'real' else (0, 0, 255) # BGR format
cv2.rectangle(frame, (x, y), (x+w, y+h), color, 2)
cv2.putText(frame, f"{label} {conf:.2f}",
(x, y-10), cv2.FONT_HERSHEY_SIMPLEX,
0.7, color, 2, cv2.LINE_AA)
# Write processed frame
out.write(frame)
# Release resources
cap.release()
out.release()
return output_path
with gr.Blocks() as demo:
gr.Markdown("# Deepfake Detection Suite")
with gr.Tab("Image Detection"):
gr.Markdown("## Image Deepfake Detection")
img_input = gr.Image(type="pil", label="Input Image")
img_output = gr.Textbox(label="Detection Result")
img_button = gr.Button("Analyze Image")
with gr.Tab("Video Detection"):
gr.Markdown("## Video Deepfake Detection")
vid_input = gr.Video(label="Input Video")
vid_output = gr.Video(label="Processed Video")
vid_button = gr.Button("Analyze Video")
img_button.click(fn=detect_deepfake_image, inputs=img_input, outputs=img_output)
vid_button.click(fn=process_video, inputs=vid_input, outputs=vid_output)
if __name__ == "__main__":
demo.launch()