Spaces:
Running
Running
Clement Vachet
commited on
Commit
·
c8a57bb
1
Parent(s):
b58c566
docs: add documentation for AWS deployment
Browse files
README.md
CHANGED
|
@@ -14,34 +14,103 @@ short_description: Object detection Lambda
|
|
| 14 |
|
| 15 |
<b>Aim: AI-driven object detection task</b>
|
| 16 |
- Front-end: user interface via Gradio library
|
| 17 |
-
- Back-end: use of AWS Lambda function to run ML models
|
| 18 |
|
| 19 |
## Local development
|
| 20 |
|
| 21 |
-
### User interface
|
| 22 |
-
Use of Gradio library for web interface
|
| 23 |
-
|
| 24 |
-
Command line:
|
| 25 |
-
> python3 app.py
|
| 26 |
-
|
| 27 |
-
<b>Note:</b> The Gradio app should now be accessible at http://localhost:7860
|
| 28 |
-
|
| 29 |
|
| 30 |
-
### Building the docker image
|
| 31 |
|
| 32 |
bash
|
| 33 |
> docker build -t object-detection-lambda .
|
| 34 |
|
| 35 |
-
### Running the docker container locally
|
| 36 |
|
| 37 |
bash
|
| 38 |
|
| 39 |
> docker run --name object-detection-lambda-cont -p 8080:8080 object-detection-lambda
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
###
|
| 43 |
|
| 44 |
Example of a prediction request
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
python
|
| 47 |
-
> python3 inference_api.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
<b>Aim: AI-driven object detection task</b>
|
| 16 |
- Front-end: user interface via Gradio library
|
| 17 |
+
- Back-end: use of AWS Lambda function to run deployed ML models
|
| 18 |
|
| 19 |
## Local development
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
+
### 1. Building the docker image
|
| 23 |
|
| 24 |
bash
|
| 25 |
> docker build -t object-detection-lambda .
|
| 26 |
|
| 27 |
+
### 2. Running the docker container locally
|
| 28 |
|
| 29 |
bash
|
| 30 |
|
| 31 |
> docker run --name object-detection-lambda-cont -p 8080:8080 object-detection-lambda
|
| 32 |
|
| 33 |
+
### 3. Execution via user interface
|
| 34 |
+
Use of Gradio library for web interface
|
| 35 |
+
|
| 36 |
+
<b>Note:</b> The environment variable ```AWS_API``` should point to the local container
|
| 37 |
+
> export AWS_API=http://localhost:8080
|
| 38 |
+
|
| 39 |
+
Command line for execution:
|
| 40 |
+
> python3 app.py
|
| 41 |
+
|
| 42 |
+
The Gradio web application should now be accessible at http://localhost:7860
|
| 43 |
+
|
| 44 |
|
| 45 |
+
### 4. Execution via command line:
|
| 46 |
|
| 47 |
Example of a prediction request
|
| 48 |
|
| 49 |
+
bash
|
| 50 |
+
> encoded_image=$(base64 -i ./tests/data/boats.jpg)
|
| 51 |
+
|
| 52 |
+
> curl -X POST "http://localhost:8080/2015-03-31/functions/function/invocations" \
|
| 53 |
+
> -H "Content-Type: application/json" \
|
| 54 |
+
> -d '{"body": "'"$encoded_image"'", "isBase64Encoded": true, "model":"yolos-small"}'
|
| 55 |
+
|
| 56 |
python
|
| 57 |
+
> python3 inference_api.py \
|
| 58 |
+
> --api http://localhost:8080/2015-03-31/functions/function/invocations \
|
| 59 |
+
> --file ./tests/data/boats.jpg \
|
| 60 |
+
> --model yolos-small
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
## Deployment to AWS
|
| 64 |
+
|
| 65 |
+
### Pushing the docker container to AWS ECR
|
| 66 |
+
|
| 67 |
+
Steps:
|
| 68 |
+
- Create new ECR Repository via aws console
|
| 69 |
+
|
| 70 |
+
Example: ```object-detection-lambda```
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
- Optional for aws cli configuration (to run above commands):
|
| 74 |
+
> aws configure
|
| 75 |
+
|
| 76 |
+
- Authenticate Docker client to the Amazon ECR registry
|
| 77 |
+
> aws ecr get-login-password --region <aws_region> | docker login --username AWS --password-stdin <aws_account_id>.dkr.ecr.<aws_region>.amazonaws.com
|
| 78 |
+
|
| 79 |
+
- Tag local docker image with the Amazon ECR registry and repository
|
| 80 |
+
> docker tag object-detection-lambda:latest <aws_account_id>.dkr.ecr.<aws_region>.amazonaws.com/object-detection-lambda:latest
|
| 81 |
+
|
| 82 |
+
- Push docker image to ECR
|
| 83 |
+
> docker push <aws_account_id>.dkr.ecr.<aws_region>.amazonaws.com/object-detection-lambda:latest
|
| 84 |
+
|
| 85 |
+
[Link to AWS Documention](https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-push-ecr-image.html)
|
| 86 |
+
|
| 87 |
+
### Creating and testing a Lambda function
|
| 88 |
+
|
| 89 |
+
<b>Steps</b>:
|
| 90 |
+
- Create function from container image
|
| 91 |
+
|
| 92 |
+
Example name: ```object-detection```
|
| 93 |
+
|
| 94 |
+
- Notes: the API endpoint will use the ```lambda_function.py``` file and ```lambda_hander``` function
|
| 95 |
+
- Test the lambda via the AWS console
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
Advanced notes:
|
| 99 |
+
- Steps to update the Lambda function with latest container via aws cli:
|
| 100 |
+
> aws lambda update-function-code --function-name object-detection --image-uri <aws_account_id>.dkr.ecr.<aws_region>.amazonaws.com/object-detection-lambda:latest
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
### Creating a REST API via API Gateway
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
<b>Steps</b>:
|
| 107 |
+
- Create a new ```Rest API``` (e.g. ```object-detection-api```)
|
| 108 |
+
- Add a new resource to the API (e.g. ```/detect```)
|
| 109 |
+
- Add a ```POST``` method to the resource
|
| 110 |
+
- Integrate the Lambda function to the API
|
| 111 |
+
- Notes: currently using proxy integration option unchecked
|
| 112 |
+
- Deploy API with a specific stage (e.g. ```dev``` stage)
|
| 113 |
+
|
| 114 |
+
Example AWS API Endpoint:
|
| 115 |
+
```https://<api_id>.execute-api.<aws_region>.amazonaws.com/dev/detect```
|
| 116 |
+
|