Spaces:
Sleeping
Sleeping
from transformers import DetrImageProcessor, DetrForObjectDetection | |
import torch | |
from PIL import Image | |
import requests | |
url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
image = Image.open(requests.get(url, stream=True).raw) | |
# you can specify the revision tag if you don't want the timm dependency | |
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm") | |
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", revision="no_timm") | |
inputs = processor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
# convert outputs (bounding boxes and class logits) to COCO API | |
# let's only keep detections with score > 0.9 | |
target_sizes = torch.tensor([image.size[::-1]]) | |
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0] | |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | |
box = [round(i, 2) for i in box.tolist()] | |
print( | |
f"Detected {model.config.id2label[label.item()]} with confidence " | |
f"{round(score.item(), 3)} at location {box}" | |
) | |