|
import asyncio |
|
import inspect |
|
import json |
|
import logging |
|
import mimetypes |
|
import os |
|
import shutil |
|
import sys |
|
import time |
|
import random |
|
from contextlib import asynccontextmanager |
|
from typing import Optional |
|
|
|
import aiohttp |
|
import requests |
|
from fastapi import ( |
|
Depends, |
|
FastAPI, |
|
File, |
|
Form, |
|
HTTPException, |
|
Request, |
|
UploadFile, |
|
status, |
|
) |
|
from fastapi.middleware.cors import CORSMiddleware |
|
from fastapi.responses import JSONResponse, RedirectResponse |
|
from fastapi.staticfiles import StaticFiles |
|
from pydantic import BaseModel |
|
from sqlalchemy import text |
|
from starlette.exceptions import HTTPException as StarletteHTTPException |
|
from starlette.middleware.base import BaseHTTPMiddleware |
|
from starlette.middleware.sessions import SessionMiddleware |
|
from starlette.responses import Response, StreamingResponse |
|
|
|
from open_webui.apps.audio.main import app as audio_app |
|
from open_webui.apps.images.main import app as images_app |
|
from open_webui.apps.ollama.main import ( |
|
app as ollama_app, |
|
get_all_models as get_ollama_models, |
|
generate_chat_completion as generate_ollama_chat_completion, |
|
GenerateChatCompletionForm, |
|
) |
|
from open_webui.apps.openai.main import ( |
|
app as openai_app, |
|
generate_chat_completion as generate_openai_chat_completion, |
|
get_all_models as get_openai_models, |
|
) |
|
from open_webui.apps.retrieval.main import app as retrieval_app |
|
from open_webui.apps.retrieval.utils import get_rag_context, rag_template |
|
from open_webui.apps.socket.main import ( |
|
app as socket_app, |
|
periodic_usage_pool_cleanup, |
|
get_event_call, |
|
get_event_emitter, |
|
) |
|
from open_webui.apps.webui.internal.db import Session |
|
from open_webui.apps.webui.main import ( |
|
app as webui_app, |
|
generate_function_chat_completion, |
|
get_all_models as get_open_webui_models, |
|
) |
|
from open_webui.apps.webui.models.functions import Functions |
|
from open_webui.apps.webui.models.models import Models |
|
from open_webui.apps.webui.models.users import UserModel, Users |
|
from open_webui.apps.webui.utils import load_function_module_by_id |
|
from open_webui.config import ( |
|
CACHE_DIR, |
|
CORS_ALLOW_ORIGIN, |
|
DEFAULT_LOCALE, |
|
ENABLE_ADMIN_CHAT_ACCESS, |
|
ENABLE_ADMIN_EXPORT, |
|
ENABLE_MODEL_FILTER, |
|
ENABLE_OLLAMA_API, |
|
ENABLE_OPENAI_API, |
|
ENV, |
|
FRONTEND_BUILD_DIR, |
|
MODEL_FILTER_LIST, |
|
OAUTH_PROVIDERS, |
|
ENABLE_SEARCH_QUERY, |
|
SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE, |
|
STATIC_DIR, |
|
TASK_MODEL, |
|
TASK_MODEL_EXTERNAL, |
|
TITLE_GENERATION_PROMPT_TEMPLATE, |
|
TAGS_GENERATION_PROMPT_TEMPLATE, |
|
TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE, |
|
WEBHOOK_URL, |
|
WEBUI_AUTH, |
|
WEBUI_NAME, |
|
AppConfig, |
|
reset_config, |
|
) |
|
from open_webui.constants import TASKS |
|
from open_webui.env import ( |
|
CHANGELOG, |
|
GLOBAL_LOG_LEVEL, |
|
SAFE_MODE, |
|
SRC_LOG_LEVELS, |
|
VERSION, |
|
WEBUI_BUILD_HASH, |
|
WEBUI_SECRET_KEY, |
|
WEBUI_SESSION_COOKIE_SAME_SITE, |
|
WEBUI_SESSION_COOKIE_SECURE, |
|
WEBUI_URL, |
|
RESET_CONFIG_ON_START, |
|
OFFLINE_MODE, |
|
) |
|
from open_webui.utils.misc import ( |
|
add_or_update_system_message, |
|
get_last_user_message, |
|
prepend_to_first_user_message_content, |
|
) |
|
from open_webui.utils.oauth import oauth_manager |
|
from open_webui.utils.payload import convert_payload_openai_to_ollama |
|
from open_webui.utils.response import ( |
|
convert_response_ollama_to_openai, |
|
convert_streaming_response_ollama_to_openai, |
|
) |
|
from open_webui.utils.security_headers import SecurityHeadersMiddleware |
|
from open_webui.utils.task import ( |
|
moa_response_generation_template, |
|
tags_generation_template, |
|
search_query_generation_template, |
|
emoji_generation_template, |
|
title_generation_template, |
|
tools_function_calling_generation_template, |
|
) |
|
from open_webui.utils.tools import get_tools |
|
from open_webui.utils.utils import ( |
|
decode_token, |
|
get_admin_user, |
|
get_current_user, |
|
get_http_authorization_cred, |
|
get_verified_user, |
|
) |
|
|
|
if SAFE_MODE: |
|
print("SAFE MODE ENABLED") |
|
Functions.deactivate_all_functions() |
|
|
|
logging.basicConfig(stream=sys.stdout, level=GLOBAL_LOG_LEVEL) |
|
log = logging.getLogger(__name__) |
|
log.setLevel(SRC_LOG_LEVELS["MAIN"]) |
|
|
|
|
|
class SPAStaticFiles(StaticFiles): |
|
async def get_response(self, path: str, scope): |
|
try: |
|
return await super().get_response(path, scope) |
|
except (HTTPException, StarletteHTTPException) as ex: |
|
if ex.status_code == 404: |
|
return await super().get_response("index.html", scope) |
|
else: |
|
raise ex |
|
|
|
|
|
print( |
|
rf""" |
|
___ __ __ _ _ _ ___ |
|
/ _ \ _ __ ___ _ __ \ \ / /__| |__ | | | |_ _| |
|
| | | | '_ \ / _ \ '_ \ \ \ /\ / / _ \ '_ \| | | || | |
|
| |_| | |_) | __/ | | | \ V V / __/ |_) | |_| || | |
|
\___/| .__/ \___|_| |_| \_/\_/ \___|_.__/ \___/|___| |
|
|_| |
|
|
|
|
|
v{VERSION} - building the best open-source AI user interface. |
|
{f"Commit: {WEBUI_BUILD_HASH}" if WEBUI_BUILD_HASH != "dev-build" else ""} |
|
https://github.com/open-webui/open-webui |
|
""" |
|
) |
|
|
|
|
|
@asynccontextmanager |
|
async def lifespan(app: FastAPI): |
|
if RESET_CONFIG_ON_START: |
|
reset_config() |
|
|
|
asyncio.create_task(periodic_usage_pool_cleanup()) |
|
yield |
|
|
|
|
|
app = FastAPI( |
|
docs_url="/docs" if ENV == "dev" else None, redoc_url=None, lifespan=lifespan |
|
) |
|
|
|
app.state.config = AppConfig() |
|
|
|
app.state.config.ENABLE_OPENAI_API = ENABLE_OPENAI_API |
|
app.state.config.ENABLE_OLLAMA_API = ENABLE_OLLAMA_API |
|
|
|
app.state.config.ENABLE_MODEL_FILTER = ENABLE_MODEL_FILTER |
|
app.state.config.MODEL_FILTER_LIST = MODEL_FILTER_LIST |
|
|
|
app.state.config.WEBHOOK_URL = WEBHOOK_URL |
|
|
|
app.state.config.TASK_MODEL = TASK_MODEL |
|
app.state.config.TASK_MODEL_EXTERNAL = TASK_MODEL_EXTERNAL |
|
app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE = TITLE_GENERATION_PROMPT_TEMPLATE |
|
app.state.config.TAGS_GENERATION_PROMPT_TEMPLATE = TAGS_GENERATION_PROMPT_TEMPLATE |
|
app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE = ( |
|
SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE |
|
) |
|
app.state.config.ENABLE_SEARCH_QUERY = ENABLE_SEARCH_QUERY |
|
app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE = ( |
|
TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE |
|
) |
|
|
|
app.state.MODELS = {} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_task_model_id(default_model_id): |
|
|
|
task_model_id = default_model_id |
|
|
|
if app.state.MODELS[task_model_id]["owned_by"] == "ollama": |
|
if ( |
|
app.state.config.TASK_MODEL |
|
and app.state.config.TASK_MODEL in app.state.MODELS |
|
): |
|
task_model_id = app.state.config.TASK_MODEL |
|
else: |
|
if ( |
|
app.state.config.TASK_MODEL_EXTERNAL |
|
and app.state.config.TASK_MODEL_EXTERNAL in app.state.MODELS |
|
): |
|
task_model_id = app.state.config.TASK_MODEL_EXTERNAL |
|
|
|
return task_model_id |
|
|
|
|
|
def get_filter_function_ids(model): |
|
def get_priority(function_id): |
|
function = Functions.get_function_by_id(function_id) |
|
if function is not None and hasattr(function, "valves"): |
|
|
|
return (function.valves if function.valves else {}).get("priority", 0) |
|
return 0 |
|
|
|
filter_ids = [function.id for function in Functions.get_global_filter_functions()] |
|
if "info" in model and "meta" in model["info"]: |
|
filter_ids.extend(model["info"]["meta"].get("filterIds", [])) |
|
filter_ids = list(set(filter_ids)) |
|
|
|
enabled_filter_ids = [ |
|
function.id |
|
for function in Functions.get_functions_by_type("filter", active_only=True) |
|
] |
|
|
|
filter_ids = [ |
|
filter_id for filter_id in filter_ids if filter_id in enabled_filter_ids |
|
] |
|
|
|
filter_ids.sort(key=get_priority) |
|
return filter_ids |
|
|
|
|
|
async def chat_completion_filter_functions_handler(body, model, extra_params): |
|
skip_files = None |
|
|
|
filter_ids = get_filter_function_ids(model) |
|
for filter_id in filter_ids: |
|
filter = Functions.get_function_by_id(filter_id) |
|
if not filter: |
|
continue |
|
|
|
if filter_id in webui_app.state.FUNCTIONS: |
|
function_module = webui_app.state.FUNCTIONS[filter_id] |
|
else: |
|
function_module, _, _ = load_function_module_by_id(filter_id) |
|
webui_app.state.FUNCTIONS[filter_id] = function_module |
|
|
|
|
|
if hasattr(function_module, "file_handler"): |
|
skip_files = function_module.file_handler |
|
|
|
if hasattr(function_module, "valves") and hasattr(function_module, "Valves"): |
|
valves = Functions.get_function_valves_by_id(filter_id) |
|
function_module.valves = function_module.Valves( |
|
**(valves if valves else {}) |
|
) |
|
|
|
if not hasattr(function_module, "inlet"): |
|
continue |
|
|
|
try: |
|
inlet = function_module.inlet |
|
|
|
|
|
sig = inspect.signature(inlet) |
|
params = {"body": body} | { |
|
k: v |
|
for k, v in { |
|
**extra_params, |
|
"__model__": model, |
|
"__id__": filter_id, |
|
}.items() |
|
if k in sig.parameters |
|
} |
|
|
|
if "__user__" in params and hasattr(function_module, "UserValves"): |
|
try: |
|
params["__user__"]["valves"] = function_module.UserValves( |
|
**Functions.get_user_valves_by_id_and_user_id( |
|
filter_id, params["__user__"]["id"] |
|
) |
|
) |
|
except Exception as e: |
|
print(e) |
|
|
|
if inspect.iscoroutinefunction(inlet): |
|
body = await inlet(**params) |
|
else: |
|
body = inlet(**params) |
|
|
|
except Exception as e: |
|
print(f"Error: {e}") |
|
raise e |
|
|
|
if skip_files and "files" in body.get("metadata", {}): |
|
del body["metadata"]["files"] |
|
|
|
return body, {} |
|
|
|
|
|
def get_tools_function_calling_payload(messages, task_model_id, content): |
|
user_message = get_last_user_message(messages) |
|
history = "\n".join( |
|
f"{message['role'].upper()}: \"\"\"{message['content']}\"\"\"" |
|
for message in messages[::-1][:4] |
|
) |
|
|
|
prompt = f"History:\n{history}\nQuery: {user_message}" |
|
|
|
return { |
|
"model": task_model_id, |
|
"messages": [ |
|
{"role": "system", "content": content}, |
|
{"role": "user", "content": f"Query: {prompt}"}, |
|
], |
|
"stream": False, |
|
"metadata": {"task": str(TASKS.FUNCTION_CALLING)}, |
|
} |
|
|
|
|
|
async def get_content_from_response(response) -> Optional[str]: |
|
content = None |
|
if hasattr(response, "body_iterator"): |
|
async for chunk in response.body_iterator: |
|
data = json.loads(chunk.decode("utf-8")) |
|
content = data["choices"][0]["message"]["content"] |
|
|
|
|
|
if response.background is not None: |
|
await response.background() |
|
else: |
|
content = response["choices"][0]["message"]["content"] |
|
return content |
|
|
|
|
|
async def chat_completion_tools_handler( |
|
body: dict, user: UserModel, extra_params: dict |
|
) -> tuple[dict, dict]: |
|
|
|
metadata = body.get("metadata", {}) |
|
|
|
tool_ids = metadata.get("tool_ids", None) |
|
log.debug(f"{tool_ids=}") |
|
if not tool_ids: |
|
return body, {} |
|
|
|
skip_files = False |
|
contexts = [] |
|
citations = [] |
|
|
|
task_model_id = get_task_model_id(body["model"]) |
|
tools = get_tools( |
|
webui_app, |
|
tool_ids, |
|
user, |
|
{ |
|
**extra_params, |
|
"__model__": app.state.MODELS[task_model_id], |
|
"__messages__": body["messages"], |
|
"__files__": metadata.get("files", []), |
|
}, |
|
) |
|
log.info(f"{tools=}") |
|
|
|
specs = [tool["spec"] for tool in tools.values()] |
|
tools_specs = json.dumps(specs) |
|
|
|
if app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE != "": |
|
template = app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE |
|
else: |
|
template = """Available Tools: {{TOOLS}}\nReturn an empty string if no tools match the query. If a function tool matches, construct and return a JSON object in the format {\"name\": \"functionName\", \"parameters\": {\"requiredFunctionParamKey\": \"requiredFunctionParamValue\"}} using the appropriate tool and its parameters. Only return the object and limit the response to the JSON object without additional text.""" |
|
|
|
tools_function_calling_prompt = tools_function_calling_generation_template( |
|
template, tools_specs |
|
) |
|
log.info(f"{tools_function_calling_prompt=}") |
|
payload = get_tools_function_calling_payload( |
|
body["messages"], task_model_id, tools_function_calling_prompt |
|
) |
|
|
|
try: |
|
payload = filter_pipeline(payload, user) |
|
except Exception as e: |
|
raise e |
|
|
|
try: |
|
response = await generate_chat_completions(form_data=payload, user=user) |
|
log.debug(f"{response=}") |
|
content = await get_content_from_response(response) |
|
log.debug(f"{content=}") |
|
|
|
if not content: |
|
return body, {} |
|
|
|
try: |
|
content = content[content.find("{") : content.rfind("}") + 1] |
|
if not content: |
|
raise Exception("No JSON object found in the response") |
|
|
|
result = json.loads(content) |
|
|
|
tool_function_name = result.get("name", None) |
|
if tool_function_name not in tools: |
|
return body, {} |
|
|
|
tool_function_params = result.get("parameters", {}) |
|
|
|
try: |
|
tool_output = await tools[tool_function_name]["callable"]( |
|
**tool_function_params |
|
) |
|
except Exception as e: |
|
tool_output = str(e) |
|
|
|
if tools[tool_function_name]["citation"]: |
|
citations.append( |
|
{ |
|
"source": { |
|
"name": f"TOOL:{tools[tool_function_name]['toolkit_id']}/{tool_function_name}" |
|
}, |
|
"document": [tool_output], |
|
"metadata": [{"source": tool_function_name}], |
|
} |
|
) |
|
if tools[tool_function_name]["file_handler"]: |
|
skip_files = True |
|
|
|
if isinstance(tool_output, str): |
|
contexts.append(tool_output) |
|
except Exception as e: |
|
log.exception(f"Error: {e}") |
|
content = None |
|
except Exception as e: |
|
log.exception(f"Error: {e}") |
|
content = None |
|
|
|
log.debug(f"tool_contexts: {contexts}") |
|
|
|
if skip_files and "files" in body.get("metadata", {}): |
|
del body["metadata"]["files"] |
|
|
|
return body, {"contexts": contexts, "citations": citations} |
|
|
|
|
|
async def chat_completion_files_handler(body) -> tuple[dict, dict[str, list]]: |
|
contexts = [] |
|
citations = [] |
|
|
|
if files := body.get("metadata", {}).get("files", None): |
|
contexts, citations = get_rag_context( |
|
files=files, |
|
messages=body["messages"], |
|
embedding_function=retrieval_app.state.EMBEDDING_FUNCTION, |
|
k=retrieval_app.state.config.TOP_K, |
|
reranking_function=retrieval_app.state.sentence_transformer_rf, |
|
r=retrieval_app.state.config.RELEVANCE_THRESHOLD, |
|
hybrid_search=retrieval_app.state.config.ENABLE_RAG_HYBRID_SEARCH, |
|
) |
|
|
|
log.debug(f"rag_contexts: {contexts}, citations: {citations}") |
|
|
|
return body, {"contexts": contexts, "citations": citations} |
|
|
|
|
|
def is_chat_completion_request(request): |
|
return request.method == "POST" and any( |
|
endpoint in request.url.path |
|
for endpoint in ["/ollama/api/chat", "/chat/completions"] |
|
) |
|
|
|
|
|
async def get_body_and_model_and_user(request): |
|
|
|
body = await request.body() |
|
body_str = body.decode("utf-8") |
|
body = json.loads(body_str) if body_str else {} |
|
|
|
model_id = body["model"] |
|
if model_id not in app.state.MODELS: |
|
raise Exception("Model not found") |
|
model = app.state.MODELS[model_id] |
|
|
|
user = get_current_user( |
|
request, |
|
get_http_authorization_cred(request.headers.get("Authorization")), |
|
) |
|
|
|
return body, model, user |
|
|
|
|
|
class ChatCompletionMiddleware(BaseHTTPMiddleware): |
|
async def dispatch(self, request: Request, call_next): |
|
if not is_chat_completion_request(request): |
|
return await call_next(request) |
|
log.debug(f"request.url.path: {request.url.path}") |
|
|
|
try: |
|
body, model, user = await get_body_and_model_and_user(request) |
|
except Exception as e: |
|
return JSONResponse( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
content={"detail": str(e)}, |
|
) |
|
|
|
metadata = { |
|
"chat_id": body.pop("chat_id", None), |
|
"message_id": body.pop("id", None), |
|
"session_id": body.pop("session_id", None), |
|
"tool_ids": body.get("tool_ids", None), |
|
"files": body.get("files", None), |
|
} |
|
body["metadata"] = metadata |
|
|
|
extra_params = { |
|
"__event_emitter__": get_event_emitter(metadata), |
|
"__event_call__": get_event_call(metadata), |
|
"__user__": { |
|
"id": user.id, |
|
"email": user.email, |
|
"name": user.name, |
|
"role": user.role, |
|
}, |
|
} |
|
|
|
|
|
|
|
data_items = [] |
|
contexts = [] |
|
citations = [] |
|
|
|
try: |
|
body, flags = await chat_completion_filter_functions_handler( |
|
body, model, extra_params |
|
) |
|
except Exception as e: |
|
return JSONResponse( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
content={"detail": str(e)}, |
|
) |
|
|
|
metadata = { |
|
**metadata, |
|
"tool_ids": body.pop("tool_ids", None), |
|
"files": body.pop("files", None), |
|
} |
|
body["metadata"] = metadata |
|
|
|
try: |
|
body, flags = await chat_completion_tools_handler(body, user, extra_params) |
|
contexts.extend(flags.get("contexts", [])) |
|
citations.extend(flags.get("citations", [])) |
|
except Exception as e: |
|
log.exception(e) |
|
|
|
try: |
|
body, flags = await chat_completion_files_handler(body) |
|
contexts.extend(flags.get("contexts", [])) |
|
citations.extend(flags.get("citations", [])) |
|
except Exception as e: |
|
log.exception(e) |
|
|
|
|
|
if len(contexts) > 0: |
|
context_string = "/n".join(contexts).strip() |
|
prompt = get_last_user_message(body["messages"]) |
|
|
|
if prompt is None: |
|
raise Exception("No user message found") |
|
if ( |
|
retrieval_app.state.config.RELEVANCE_THRESHOLD == 0 |
|
and context_string.strip() == "" |
|
): |
|
log.debug( |
|
f"With a 0 relevancy threshold for RAG, the context cannot be empty" |
|
) |
|
|
|
|
|
|
|
if model["owned_by"] == "ollama": |
|
body["messages"] = prepend_to_first_user_message_content( |
|
rag_template( |
|
retrieval_app.state.config.RAG_TEMPLATE, context_string, prompt |
|
), |
|
body["messages"], |
|
) |
|
else: |
|
body["messages"] = add_or_update_system_message( |
|
rag_template( |
|
retrieval_app.state.config.RAG_TEMPLATE, context_string, prompt |
|
), |
|
body["messages"], |
|
) |
|
|
|
|
|
if len(citations) > 0: |
|
data_items.append({"citations": citations}) |
|
|
|
modified_body_bytes = json.dumps(body).encode("utf-8") |
|
|
|
request._body = modified_body_bytes |
|
|
|
request.headers.__dict__["_list"] = [ |
|
(b"content-length", str(len(modified_body_bytes)).encode("utf-8")), |
|
*[(k, v) for k, v in request.headers.raw if k.lower() != b"content-length"], |
|
] |
|
|
|
response = await call_next(request) |
|
if not isinstance(response, StreamingResponse): |
|
return response |
|
|
|
content_type = response.headers["Content-Type"] |
|
is_openai = "text/event-stream" in content_type |
|
is_ollama = "application/x-ndjson" in content_type |
|
if not is_openai and not is_ollama: |
|
return response |
|
|
|
def wrap_item(item): |
|
return f"data: {item}\n\n" if is_openai else f"{item}\n" |
|
|
|
async def stream_wrapper(original_generator, data_items): |
|
for item in data_items: |
|
yield wrap_item(json.dumps(item)) |
|
|
|
async for data in original_generator: |
|
yield data |
|
|
|
return StreamingResponse( |
|
stream_wrapper(response.body_iterator, data_items), |
|
headers=dict(response.headers), |
|
) |
|
|
|
async def _receive(self, body: bytes): |
|
return {"type": "http.request", "body": body, "more_body": False} |
|
|
|
|
|
app.add_middleware(ChatCompletionMiddleware) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_sorted_filters(model_id): |
|
filters = [ |
|
model |
|
for model in app.state.MODELS.values() |
|
if "pipeline" in model |
|
and "type" in model["pipeline"] |
|
and model["pipeline"]["type"] == "filter" |
|
and ( |
|
model["pipeline"]["pipelines"] == ["*"] |
|
or any( |
|
model_id == target_model_id |
|
for target_model_id in model["pipeline"]["pipelines"] |
|
) |
|
) |
|
] |
|
sorted_filters = sorted(filters, key=lambda x: x["pipeline"]["priority"]) |
|
return sorted_filters |
|
|
|
|
|
def filter_pipeline(payload, user): |
|
user = {"id": user.id, "email": user.email, "name": user.name, "role": user.role} |
|
model_id = payload["model"] |
|
sorted_filters = get_sorted_filters(model_id) |
|
|
|
model = app.state.MODELS[model_id] |
|
|
|
if "pipeline" in model: |
|
sorted_filters.append(model) |
|
|
|
for filter in sorted_filters: |
|
r = None |
|
try: |
|
urlIdx = filter["urlIdx"] |
|
|
|
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] |
|
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] |
|
|
|
if key == "": |
|
continue |
|
|
|
headers = {"Authorization": f"Bearer {key}"} |
|
r = requests.post( |
|
f"{url}/{filter['id']}/filter/inlet", |
|
headers=headers, |
|
json={ |
|
"user": user, |
|
"body": payload, |
|
}, |
|
) |
|
|
|
r.raise_for_status() |
|
payload = r.json() |
|
except Exception as e: |
|
|
|
print(f"Connection error: {e}") |
|
|
|
if r is not None: |
|
res = r.json() |
|
if "detail" in res: |
|
raise Exception(r.status_code, res["detail"]) |
|
|
|
return payload |
|
|
|
|
|
class PipelineMiddleware(BaseHTTPMiddleware): |
|
async def dispatch(self, request: Request, call_next): |
|
if not is_chat_completion_request(request): |
|
return await call_next(request) |
|
|
|
log.debug(f"request.url.path: {request.url.path}") |
|
|
|
|
|
body = await request.body() |
|
|
|
body_str = body.decode("utf-8") |
|
|
|
data = json.loads(body_str) if body_str else {} |
|
|
|
try: |
|
user = get_current_user( |
|
request, |
|
get_http_authorization_cred(request.headers["Authorization"]), |
|
) |
|
except KeyError as e: |
|
if len(e.args) > 1: |
|
return JSONResponse( |
|
status_code=e.args[0], |
|
content={"detail": e.args[1]}, |
|
) |
|
else: |
|
return JSONResponse( |
|
status_code=status.HTTP_401_UNAUTHORIZED, |
|
content={"detail": "Not authenticated"}, |
|
) |
|
|
|
try: |
|
data = filter_pipeline(data, user) |
|
except Exception as e: |
|
if len(e.args) > 1: |
|
return JSONResponse( |
|
status_code=e.args[0], |
|
content={"detail": e.args[1]}, |
|
) |
|
else: |
|
return JSONResponse( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
content={"detail": str(e)}, |
|
) |
|
|
|
modified_body_bytes = json.dumps(data).encode("utf-8") |
|
|
|
request._body = modified_body_bytes |
|
|
|
request.headers.__dict__["_list"] = [ |
|
(b"content-length", str(len(modified_body_bytes)).encode("utf-8")), |
|
*[(k, v) for k, v in request.headers.raw if k.lower() != b"content-length"], |
|
] |
|
|
|
response = await call_next(request) |
|
return response |
|
|
|
async def _receive(self, body: bytes): |
|
return {"type": "http.request", "body": body, "more_body": False} |
|
|
|
|
|
app.add_middleware(PipelineMiddleware) |
|
|
|
|
|
from urllib.parse import urlencode, parse_qs, urlparse |
|
|
|
|
|
class RedirectMiddleware(BaseHTTPMiddleware): |
|
async def dispatch(self, request: Request, call_next): |
|
|
|
if request.method == "GET": |
|
path = request.url.path |
|
query_params = dict(parse_qs(urlparse(str(request.url)).query)) |
|
|
|
|
|
if path.endswith("/watch") and "v" in query_params: |
|
video_id = query_params["v"][0] |
|
encoded_video_id = urlencode({"youtube": video_id}) |
|
redirect_url = f"/?{encoded_video_id}" |
|
return RedirectResponse(url=redirect_url) |
|
|
|
|
|
response = await call_next(request) |
|
return response |
|
|
|
|
|
|
|
app.add_middleware(RedirectMiddleware) |
|
|
|
|
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins=CORS_ALLOW_ORIGIN, |
|
allow_credentials=True, |
|
allow_methods=["*"], |
|
allow_headers=["*"], |
|
) |
|
|
|
app.add_middleware(SecurityHeadersMiddleware) |
|
|
|
|
|
@app.middleware("http") |
|
async def commit_session_after_request(request: Request, call_next): |
|
response = await call_next(request) |
|
log.debug("Commit session after request") |
|
Session.commit() |
|
return response |
|
|
|
|
|
@app.middleware("http") |
|
async def check_url(request: Request, call_next): |
|
if len(app.state.MODELS) == 0: |
|
await get_all_models() |
|
else: |
|
pass |
|
|
|
start_time = int(time.time()) |
|
response = await call_next(request) |
|
process_time = int(time.time()) - start_time |
|
response.headers["X-Process-Time"] = str(process_time) |
|
|
|
return response |
|
|
|
|
|
@app.middleware("http") |
|
async def update_embedding_function(request: Request, call_next): |
|
response = await call_next(request) |
|
if "/embedding/update" in request.url.path: |
|
webui_app.state.EMBEDDING_FUNCTION = retrieval_app.state.EMBEDDING_FUNCTION |
|
return response |
|
|
|
|
|
@app.middleware("http") |
|
async def inspect_websocket(request: Request, call_next): |
|
if ( |
|
"/ws/socket.io" in request.url.path |
|
and request.query_params.get("transport") == "websocket" |
|
): |
|
upgrade = (request.headers.get("Upgrade") or "").lower() |
|
connection = (request.headers.get("Connection") or "").lower().split(",") |
|
|
|
|
|
if upgrade != "websocket" or "upgrade" not in connection: |
|
return JSONResponse( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
content={"detail": "Invalid WebSocket upgrade request"}, |
|
) |
|
return await call_next(request) |
|
|
|
|
|
app.mount("/ws", socket_app) |
|
app.mount("/ollama", ollama_app) |
|
app.mount("/openai", openai_app) |
|
|
|
app.mount("/images/api/v1", images_app) |
|
app.mount("/audio/api/v1", audio_app) |
|
app.mount("/retrieval/api/v1", retrieval_app) |
|
|
|
app.mount("/api/v1", webui_app) |
|
|
|
|
|
webui_app.state.EMBEDDING_FUNCTION = retrieval_app.state.EMBEDDING_FUNCTION |
|
|
|
|
|
async def get_all_models(): |
|
|
|
open_webui_models = [] |
|
openai_models = [] |
|
ollama_models = [] |
|
|
|
if app.state.config.ENABLE_OPENAI_API: |
|
openai_models = await get_openai_models() |
|
openai_models = openai_models["data"] |
|
|
|
if app.state.config.ENABLE_OLLAMA_API: |
|
ollama_models = await get_ollama_models() |
|
ollama_models = [ |
|
{ |
|
"id": model["model"], |
|
"name": model["name"], |
|
"object": "model", |
|
"created": int(time.time()), |
|
"owned_by": "ollama", |
|
"ollama": model, |
|
} |
|
for model in ollama_models["models"] |
|
] |
|
|
|
open_webui_models = await get_open_webui_models() |
|
|
|
models = open_webui_models + openai_models + ollama_models |
|
|
|
|
|
if len([model for model in models if model["owned_by"] != "arena"]) == 0: |
|
return [] |
|
|
|
global_action_ids = [ |
|
function.id for function in Functions.get_global_action_functions() |
|
] |
|
enabled_action_ids = [ |
|
function.id |
|
for function in Functions.get_functions_by_type("action", active_only=True) |
|
] |
|
|
|
custom_models = Models.get_all_models() |
|
for custom_model in custom_models: |
|
if custom_model.base_model_id is None: |
|
for model in models: |
|
if ( |
|
custom_model.id == model["id"] |
|
or custom_model.id == model["id"].split(":")[0] |
|
): |
|
model["name"] = custom_model.name |
|
model["info"] = custom_model.model_dump() |
|
|
|
action_ids = [] |
|
if "info" in model and "meta" in model["info"]: |
|
action_ids.extend(model["info"]["meta"].get("actionIds", [])) |
|
|
|
model["action_ids"] = action_ids |
|
else: |
|
owned_by = "openai" |
|
pipe = None |
|
action_ids = [] |
|
|
|
for model in models: |
|
if ( |
|
custom_model.base_model_id == model["id"] |
|
or custom_model.base_model_id == model["id"].split(":")[0] |
|
): |
|
owned_by = model["owned_by"] |
|
if "pipe" in model: |
|
pipe = model["pipe"] |
|
break |
|
|
|
if custom_model.meta: |
|
meta = custom_model.meta.model_dump() |
|
if "actionIds" in meta: |
|
action_ids.extend(meta["actionIds"]) |
|
|
|
models.append( |
|
{ |
|
"id": custom_model.id, |
|
"name": custom_model.name, |
|
"object": "model", |
|
"created": custom_model.created_at, |
|
"owned_by": owned_by, |
|
"info": custom_model.model_dump(), |
|
"preset": True, |
|
**({"pipe": pipe} if pipe is not None else {}), |
|
"action_ids": action_ids, |
|
} |
|
) |
|
|
|
for model in models: |
|
action_ids = [] |
|
if "action_ids" in model: |
|
action_ids = model["action_ids"] |
|
del model["action_ids"] |
|
|
|
action_ids = action_ids + global_action_ids |
|
action_ids = list(set(action_ids)) |
|
action_ids = [ |
|
action_id for action_id in action_ids if action_id in enabled_action_ids |
|
] |
|
|
|
model["actions"] = [] |
|
for action_id in action_ids: |
|
action = Functions.get_function_by_id(action_id) |
|
if action is None: |
|
raise Exception(f"Action not found: {action_id}") |
|
|
|
if action_id in webui_app.state.FUNCTIONS: |
|
function_module = webui_app.state.FUNCTIONS[action_id] |
|
else: |
|
function_module, _, _ = load_function_module_by_id(action_id) |
|
webui_app.state.FUNCTIONS[action_id] = function_module |
|
|
|
__webui__ = False |
|
if hasattr(function_module, "__webui__"): |
|
__webui__ = function_module.__webui__ |
|
|
|
if hasattr(function_module, "actions"): |
|
actions = function_module.actions |
|
model["actions"].extend( |
|
[ |
|
{ |
|
"id": f"{action_id}.{_action['id']}", |
|
"name": _action.get( |
|
"name", f"{action.name} ({_action['id']})" |
|
), |
|
"description": action.meta.description, |
|
"icon_url": _action.get( |
|
"icon_url", action.meta.manifest.get("icon_url", None) |
|
), |
|
**({"__webui__": __webui__} if __webui__ else {}), |
|
} |
|
for _action in actions |
|
] |
|
) |
|
else: |
|
model["actions"].append( |
|
{ |
|
"id": action_id, |
|
"name": action.name, |
|
"description": action.meta.description, |
|
"icon_url": action.meta.manifest.get("icon_url", None), |
|
**({"__webui__": __webui__} if __webui__ else {}), |
|
} |
|
) |
|
|
|
app.state.MODELS = {model["id"]: model for model in models} |
|
webui_app.state.MODELS = app.state.MODELS |
|
|
|
return models |
|
|
|
|
|
@app.get("/api/models") |
|
async def get_models(user=Depends(get_verified_user)): |
|
models = await get_all_models() |
|
|
|
|
|
models = [ |
|
model |
|
for model in models |
|
if "pipeline" not in model or model["pipeline"].get("type", None) != "filter" |
|
] |
|
|
|
if app.state.config.ENABLE_MODEL_FILTER: |
|
if user.role == "user": |
|
models = list( |
|
filter( |
|
lambda model: model["id"] in app.state.config.MODEL_FILTER_LIST, |
|
models, |
|
) |
|
) |
|
return {"data": models} |
|
|
|
return {"data": models} |
|
|
|
|
|
@app.post("/api/chat/completions") |
|
async def generate_chat_completions( |
|
form_data: dict, user=Depends(get_verified_user), bypass_filter: bool = False |
|
): |
|
model_id = form_data["model"] |
|
|
|
if model_id not in app.state.MODELS: |
|
raise HTTPException( |
|
status_code=status.HTTP_404_NOT_FOUND, |
|
detail="Model not found", |
|
) |
|
|
|
if not bypass_filter and app.state.config.ENABLE_MODEL_FILTER: |
|
if user.role == "user" and model_id not in app.state.config.MODEL_FILTER_LIST: |
|
raise HTTPException( |
|
status_code=status.HTTP_403_FORBIDDEN, |
|
detail="Model not found", |
|
) |
|
|
|
model = app.state.MODELS[model_id] |
|
|
|
if model["owned_by"] == "arena": |
|
model_ids = model.get("info", {}).get("meta", {}).get("model_ids") |
|
filter_mode = model.get("info", {}).get("meta", {}).get("filter_mode") |
|
if model_ids and filter_mode == "exclude": |
|
model_ids = [ |
|
model["id"] |
|
for model in await get_all_models() |
|
if model.get("owned_by") != "arena" |
|
and not model.get("info", {}).get("meta", {}).get("hidden", False) |
|
and model["id"] not in model_ids |
|
] |
|
|
|
selected_model_id = None |
|
if isinstance(model_ids, list) and model_ids: |
|
selected_model_id = random.choice(model_ids) |
|
else: |
|
model_ids = [ |
|
model["id"] |
|
for model in await get_all_models() |
|
if model.get("owned_by") != "arena" |
|
and not model.get("info", {}).get("meta", {}).get("hidden", False) |
|
] |
|
selected_model_id = random.choice(model_ids) |
|
|
|
form_data["model"] = selected_model_id |
|
|
|
if form_data.get("stream") == True: |
|
|
|
async def stream_wrapper(stream): |
|
yield f"data: {json.dumps({'selected_model_id': selected_model_id})}\n\n" |
|
async for chunk in stream: |
|
yield chunk |
|
|
|
response = await generate_chat_completions( |
|
form_data, user, bypass_filter=True |
|
) |
|
return StreamingResponse( |
|
stream_wrapper(response.body_iterator), media_type="text/event-stream" |
|
) |
|
else: |
|
return { |
|
**( |
|
await generate_chat_completions(form_data, user, bypass_filter=True) |
|
), |
|
"selected_model_id": selected_model_id, |
|
} |
|
if model.get("pipe"): |
|
return await generate_function_chat_completion(form_data, user=user) |
|
if model["owned_by"] == "ollama": |
|
|
|
form_data = convert_payload_openai_to_ollama(form_data) |
|
form_data = GenerateChatCompletionForm(**form_data) |
|
response = await generate_ollama_chat_completion( |
|
form_data=form_data, user=user, bypass_filter=True |
|
) |
|
if form_data.stream: |
|
response.headers["content-type"] = "text/event-stream" |
|
return StreamingResponse( |
|
convert_streaming_response_ollama_to_openai(response), |
|
headers=dict(response.headers), |
|
) |
|
else: |
|
return convert_response_ollama_to_openai(response) |
|
else: |
|
return await generate_openai_chat_completion(form_data, user=user) |
|
|
|
|
|
@app.post("/api/chat/completed") |
|
async def chat_completed(form_data: dict, user=Depends(get_verified_user)): |
|
data = form_data |
|
model_id = data["model"] |
|
if model_id not in app.state.MODELS: |
|
raise HTTPException( |
|
status_code=status.HTTP_404_NOT_FOUND, |
|
detail="Model not found", |
|
) |
|
model = app.state.MODELS[model_id] |
|
|
|
sorted_filters = get_sorted_filters(model_id) |
|
if "pipeline" in model: |
|
sorted_filters = [model] + sorted_filters |
|
|
|
for filter in sorted_filters: |
|
r = None |
|
try: |
|
urlIdx = filter["urlIdx"] |
|
|
|
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] |
|
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] |
|
|
|
if key != "": |
|
headers = {"Authorization": f"Bearer {key}"} |
|
r = requests.post( |
|
f"{url}/{filter['id']}/filter/outlet", |
|
headers=headers, |
|
json={ |
|
"user": { |
|
"id": user.id, |
|
"name": user.name, |
|
"email": user.email, |
|
"role": user.role, |
|
}, |
|
"body": data, |
|
}, |
|
) |
|
|
|
r.raise_for_status() |
|
data = r.json() |
|
except Exception as e: |
|
|
|
print(f"Connection error: {e}") |
|
|
|
if r is not None: |
|
try: |
|
res = r.json() |
|
if "detail" in res: |
|
return JSONResponse( |
|
status_code=r.status_code, |
|
content=res, |
|
) |
|
except Exception: |
|
pass |
|
|
|
else: |
|
pass |
|
|
|
__event_emitter__ = get_event_emitter( |
|
{ |
|
"chat_id": data["chat_id"], |
|
"message_id": data["id"], |
|
"session_id": data["session_id"], |
|
} |
|
) |
|
|
|
__event_call__ = get_event_call( |
|
{ |
|
"chat_id": data["chat_id"], |
|
"message_id": data["id"], |
|
"session_id": data["session_id"], |
|
} |
|
) |
|
|
|
def get_priority(function_id): |
|
function = Functions.get_function_by_id(function_id) |
|
if function is not None and hasattr(function, "valves"): |
|
|
|
return (function.valves if function.valves else {}).get("priority", 0) |
|
return 0 |
|
|
|
filter_ids = [function.id for function in Functions.get_global_filter_functions()] |
|
if "info" in model and "meta" in model["info"]: |
|
filter_ids.extend(model["info"]["meta"].get("filterIds", [])) |
|
filter_ids = list(set(filter_ids)) |
|
|
|
enabled_filter_ids = [ |
|
function.id |
|
for function in Functions.get_functions_by_type("filter", active_only=True) |
|
] |
|
filter_ids = [ |
|
filter_id for filter_id in filter_ids if filter_id in enabled_filter_ids |
|
] |
|
|
|
|
|
filter_ids.sort(key=get_priority) |
|
|
|
for filter_id in filter_ids: |
|
filter = Functions.get_function_by_id(filter_id) |
|
if not filter: |
|
continue |
|
|
|
if filter_id in webui_app.state.FUNCTIONS: |
|
function_module = webui_app.state.FUNCTIONS[filter_id] |
|
else: |
|
function_module, _, _ = load_function_module_by_id(filter_id) |
|
webui_app.state.FUNCTIONS[filter_id] = function_module |
|
|
|
if hasattr(function_module, "valves") and hasattr(function_module, "Valves"): |
|
valves = Functions.get_function_valves_by_id(filter_id) |
|
function_module.valves = function_module.Valves( |
|
**(valves if valves else {}) |
|
) |
|
|
|
if not hasattr(function_module, "outlet"): |
|
continue |
|
try: |
|
outlet = function_module.outlet |
|
|
|
|
|
sig = inspect.signature(outlet) |
|
params = {"body": data} |
|
|
|
|
|
extra_params = { |
|
"__model__": model, |
|
"__id__": filter_id, |
|
"__event_emitter__": __event_emitter__, |
|
"__event_call__": __event_call__, |
|
} |
|
|
|
|
|
for key, value in extra_params.items(): |
|
if key in sig.parameters: |
|
params[key] = value |
|
|
|
if "__user__" in sig.parameters: |
|
__user__ = { |
|
"id": user.id, |
|
"email": user.email, |
|
"name": user.name, |
|
"role": user.role, |
|
} |
|
|
|
try: |
|
if hasattr(function_module, "UserValves"): |
|
__user__["valves"] = function_module.UserValves( |
|
**Functions.get_user_valves_by_id_and_user_id( |
|
filter_id, user.id |
|
) |
|
) |
|
except Exception as e: |
|
print(e) |
|
|
|
params = {**params, "__user__": __user__} |
|
|
|
if inspect.iscoroutinefunction(outlet): |
|
data = await outlet(**params) |
|
else: |
|
data = outlet(**params) |
|
|
|
except Exception as e: |
|
print(f"Error: {e}") |
|
return JSONResponse( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
content={"detail": str(e)}, |
|
) |
|
|
|
return data |
|
|
|
|
|
@app.post("/api/chat/actions/{action_id}") |
|
async def chat_action(action_id: str, form_data: dict, user=Depends(get_verified_user)): |
|
if "." in action_id: |
|
action_id, sub_action_id = action_id.split(".") |
|
else: |
|
sub_action_id = None |
|
|
|
action = Functions.get_function_by_id(action_id) |
|
if not action: |
|
raise HTTPException( |
|
status_code=status.HTTP_404_NOT_FOUND, |
|
detail="Action not found", |
|
) |
|
|
|
data = form_data |
|
model_id = data["model"] |
|
if model_id not in app.state.MODELS: |
|
raise HTTPException( |
|
status_code=status.HTTP_404_NOT_FOUND, |
|
detail="Model not found", |
|
) |
|
model = app.state.MODELS[model_id] |
|
|
|
__event_emitter__ = get_event_emitter( |
|
{ |
|
"chat_id": data["chat_id"], |
|
"message_id": data["id"], |
|
"session_id": data["session_id"], |
|
} |
|
) |
|
__event_call__ = get_event_call( |
|
{ |
|
"chat_id": data["chat_id"], |
|
"message_id": data["id"], |
|
"session_id": data["session_id"], |
|
} |
|
) |
|
|
|
if action_id in webui_app.state.FUNCTIONS: |
|
function_module = webui_app.state.FUNCTIONS[action_id] |
|
else: |
|
function_module, _, _ = load_function_module_by_id(action_id) |
|
webui_app.state.FUNCTIONS[action_id] = function_module |
|
|
|
if hasattr(function_module, "valves") and hasattr(function_module, "Valves"): |
|
valves = Functions.get_function_valves_by_id(action_id) |
|
function_module.valves = function_module.Valves(**(valves if valves else {})) |
|
|
|
if hasattr(function_module, "action"): |
|
try: |
|
action = function_module.action |
|
|
|
|
|
sig = inspect.signature(action) |
|
params = {"body": data} |
|
|
|
|
|
extra_params = { |
|
"__model__": model, |
|
"__id__": sub_action_id if sub_action_id is not None else action_id, |
|
"__event_emitter__": __event_emitter__, |
|
"__event_call__": __event_call__, |
|
} |
|
|
|
|
|
for key, value in extra_params.items(): |
|
if key in sig.parameters: |
|
params[key] = value |
|
|
|
if "__user__" in sig.parameters: |
|
__user__ = { |
|
"id": user.id, |
|
"email": user.email, |
|
"name": user.name, |
|
"role": user.role, |
|
} |
|
|
|
try: |
|
if hasattr(function_module, "UserValves"): |
|
__user__["valves"] = function_module.UserValves( |
|
**Functions.get_user_valves_by_id_and_user_id( |
|
action_id, user.id |
|
) |
|
) |
|
except Exception as e: |
|
print(e) |
|
|
|
params = {**params, "__user__": __user__} |
|
|
|
if inspect.iscoroutinefunction(action): |
|
data = await action(**params) |
|
else: |
|
data = action(**params) |
|
|
|
except Exception as e: |
|
print(f"Error: {e}") |
|
return JSONResponse( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
content={"detail": str(e)}, |
|
) |
|
|
|
return data |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@app.get("/api/task/config") |
|
async def get_task_config(user=Depends(get_verified_user)): |
|
return { |
|
"TASK_MODEL": app.state.config.TASK_MODEL, |
|
"TASK_MODEL_EXTERNAL": app.state.config.TASK_MODEL_EXTERNAL, |
|
"TITLE_GENERATION_PROMPT_TEMPLATE": app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE, |
|
"TAGS_GENERATION_PROMPT_TEMPLATE": app.state.config.TAGS_GENERATION_PROMPT_TEMPLATE, |
|
"ENABLE_SEARCH_QUERY": app.state.config.ENABLE_SEARCH_QUERY, |
|
"SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE": app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE, |
|
"TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE": app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE, |
|
} |
|
|
|
|
|
class TaskConfigForm(BaseModel): |
|
TASK_MODEL: Optional[str] |
|
TASK_MODEL_EXTERNAL: Optional[str] |
|
TITLE_GENERATION_PROMPT_TEMPLATE: str |
|
TAGS_GENERATION_PROMPT_TEMPLATE: str |
|
SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE: str |
|
ENABLE_SEARCH_QUERY: bool |
|
TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE: str |
|
|
|
|
|
@app.post("/api/task/config/update") |
|
async def update_task_config(form_data: TaskConfigForm, user=Depends(get_admin_user)): |
|
app.state.config.TASK_MODEL = form_data.TASK_MODEL |
|
app.state.config.TASK_MODEL_EXTERNAL = form_data.TASK_MODEL_EXTERNAL |
|
app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE = ( |
|
form_data.TITLE_GENERATION_PROMPT_TEMPLATE |
|
) |
|
app.state.config.TAGS_GENERATION_PROMPT_TEMPLATE = ( |
|
form_data.TAGS_GENERATION_PROMPT_TEMPLATE |
|
) |
|
|
|
app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE = ( |
|
form_data.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE |
|
) |
|
app.state.config.ENABLE_SEARCH_QUERY = form_data.ENABLE_SEARCH_QUERY |
|
app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE = ( |
|
form_data.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE |
|
) |
|
|
|
return { |
|
"TASK_MODEL": app.state.config.TASK_MODEL, |
|
"TASK_MODEL_EXTERNAL": app.state.config.TASK_MODEL_EXTERNAL, |
|
"TITLE_GENERATION_PROMPT_TEMPLATE": app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE, |
|
"TAGS_GENERATION_PROMPT_TEMPLATE": app.state.config.TAGS_GENERATION_PROMPT_TEMPLATE, |
|
"SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE": app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE, |
|
"ENABLE_SEARCH_QUERY": app.state.config.ENABLE_SEARCH_QUERY, |
|
"TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE": app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE, |
|
} |
|
|
|
|
|
@app.post("/api/task/title/completions") |
|
async def generate_title(form_data: dict, user=Depends(get_verified_user)): |
|
print("generate_title") |
|
|
|
model_id = form_data["model"] |
|
if model_id not in app.state.MODELS: |
|
raise HTTPException( |
|
status_code=status.HTTP_404_NOT_FOUND, |
|
detail="Model not found", |
|
) |
|
|
|
|
|
|
|
task_model_id = get_task_model_id(model_id) |
|
print(task_model_id) |
|
|
|
model = app.state.MODELS[task_model_id] |
|
|
|
if app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE != "": |
|
template = app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE |
|
else: |
|
template = """Create a concise, 3-5 word title with an emoji as a title for the chat history, in the given language. Suitable Emojis for the summary can be used to enhance understanding but avoid quotation marks or special formatting. RESPOND ONLY WITH THE TITLE TEXT. |
|
|
|
Examples of titles: |
|
📉 Stock Market Trends |
|
🍪 Perfect Chocolate Chip Recipe |
|
Evolution of Music Streaming |
|
Remote Work Productivity Tips |
|
Artificial Intelligence in Healthcare |
|
🎮 Video Game Development Insights |
|
|
|
<chat_history> |
|
{{MESSAGES:END:2}} |
|
</chat_history>""" |
|
|
|
content = title_generation_template( |
|
template, |
|
form_data["messages"], |
|
{ |
|
"name": user.name, |
|
"location": user.info.get("location") if user.info else None, |
|
}, |
|
) |
|
|
|
payload = { |
|
"model": task_model_id, |
|
"messages": [{"role": "user", "content": content}], |
|
"stream": False, |
|
**( |
|
{"max_tokens": 50} |
|
if app.state.MODELS[task_model_id]["owned_by"] == "ollama" |
|
else { |
|
"max_completion_tokens": 50, |
|
} |
|
), |
|
"chat_id": form_data.get("chat_id", None), |
|
"metadata": {"task": str(TASKS.TITLE_GENERATION), "task_body": form_data}, |
|
} |
|
log.debug(payload) |
|
|
|
|
|
try: |
|
payload = filter_pipeline(payload, user) |
|
except Exception as e: |
|
if len(e.args) > 1: |
|
return JSONResponse( |
|
status_code=e.args[0], |
|
content={"detail": e.args[1]}, |
|
) |
|
else: |
|
return JSONResponse( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
content={"detail": str(e)}, |
|
) |
|
if "chat_id" in payload: |
|
del payload["chat_id"] |
|
|
|
return await generate_chat_completions(form_data=payload, user=user) |
|
|
|
|
|
@app.post("/api/task/tags/completions") |
|
async def generate_chat_tags(form_data: dict, user=Depends(get_verified_user)): |
|
print("generate_chat_tags") |
|
model_id = form_data["model"] |
|
if model_id not in app.state.MODELS: |
|
raise HTTPException( |
|
status_code=status.HTTP_404_NOT_FOUND, |
|
detail="Model not found", |
|
) |
|
|
|
|
|
|
|
task_model_id = get_task_model_id(model_id) |
|
print(task_model_id) |
|
|
|
if app.state.config.TAGS_GENERATION_PROMPT_TEMPLATE != "": |
|
template = app.state.config.TAGS_GENERATION_PROMPT_TEMPLATE |
|
else: |
|
template = """### Task: |
|
Generate 1-3 broad tags categorizing the main themes of the chat history, along with 1-3 more specific subtopic tags. |
|
|
|
### Guidelines: |
|
- Start with high-level domains (e.g. Science, Technology, Philosophy, Arts, Politics, Business, Health, Sports, Entertainment, Education) |
|
- Consider including relevant subfields/subdomains if they are strongly represented throughout the conversation |
|
- If content is too short (less than 3 messages) or too diverse, use only ["General"] |
|
- Use the chat's primary language; default to English if multilingual |
|
- Prioritize accuracy over specificity |
|
|
|
### Output: |
|
JSON format: { "tags": ["tag1", "tag2", "tag3"] } |
|
|
|
### Chat History: |
|
<chat_history> |
|
{{MESSAGES:END:6}} |
|
</chat_history>""" |
|
|
|
content = tags_generation_template( |
|
template, form_data["messages"], {"name": user.name} |
|
) |
|
|
|
print("content", content) |
|
payload = { |
|
"model": task_model_id, |
|
"messages": [{"role": "user", "content": content}], |
|
"stream": False, |
|
"metadata": {"task": str(TASKS.TAGS_GENERATION), "task_body": form_data}, |
|
} |
|
log.debug(payload) |
|
|
|
|
|
try: |
|
payload = filter_pipeline(payload, user) |
|
except Exception as e: |
|
if len(e.args) > 1: |
|
return JSONResponse( |
|
status_code=e.args[0], |
|
content={"detail": e.args[1]}, |
|
) |
|
else: |
|
return JSONResponse( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
content={"detail": str(e)}, |
|
) |
|
if "chat_id" in payload: |
|
del payload["chat_id"] |
|
|
|
return await generate_chat_completions(form_data=payload, user=user) |
|
|
|
|
|
@app.post("/api/task/query/completions") |
|
async def generate_search_query(form_data: dict, user=Depends(get_verified_user)): |
|
print("generate_search_query") |
|
if not app.state.config.ENABLE_SEARCH_QUERY: |
|
raise HTTPException( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
detail=f"Search query generation is disabled", |
|
) |
|
|
|
model_id = form_data["model"] |
|
if model_id not in app.state.MODELS: |
|
raise HTTPException( |
|
status_code=status.HTTP_404_NOT_FOUND, |
|
detail="Model not found", |
|
) |
|
|
|
|
|
|
|
task_model_id = get_task_model_id(model_id) |
|
print(task_model_id) |
|
|
|
model = app.state.MODELS[task_model_id] |
|
|
|
if app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE != "": |
|
template = app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE |
|
else: |
|
template = """Given the user's message and interaction history, decide if a web search is necessary. You must be concise and exclusively provide a search query if one is necessary. Refrain from verbose responses or any additional commentary. Prefer suggesting a search if uncertain to provide comprehensive or updated information. If a search isn't needed at all, respond with an empty string. Default to a search query when in doubt. Today's date is {{CURRENT_DATE}}. |
|
|
|
User Message: |
|
{{prompt:end:4000}} |
|
|
|
Interaction History: |
|
{{MESSAGES:END:6}} |
|
|
|
Search Query:""" |
|
|
|
content = search_query_generation_template( |
|
template, form_data["messages"], {"name": user.name} |
|
) |
|
|
|
print("content", content) |
|
|
|
payload = { |
|
"model": task_model_id, |
|
"messages": [{"role": "user", "content": content}], |
|
"stream": False, |
|
**( |
|
{"max_tokens": 30} |
|
if app.state.MODELS[task_model_id]["owned_by"] == "ollama" |
|
else { |
|
"max_completion_tokens": 30, |
|
} |
|
), |
|
"metadata": {"task": str(TASKS.QUERY_GENERATION), "task_body": form_data}, |
|
} |
|
log.debug(payload) |
|
|
|
|
|
try: |
|
payload = filter_pipeline(payload, user) |
|
except Exception as e: |
|
if len(e.args) > 1: |
|
return JSONResponse( |
|
status_code=e.args[0], |
|
content={"detail": e.args[1]}, |
|
) |
|
else: |
|
return JSONResponse( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
content={"detail": str(e)}, |
|
) |
|
if "chat_id" in payload: |
|
del payload["chat_id"] |
|
|
|
return await generate_chat_completions(form_data=payload, user=user) |
|
|
|
|
|
@app.post("/api/task/emoji/completions") |
|
async def generate_emoji(form_data: dict, user=Depends(get_verified_user)): |
|
print("generate_emoji") |
|
|
|
model_id = form_data["model"] |
|
if model_id not in app.state.MODELS: |
|
raise HTTPException( |
|
status_code=status.HTTP_404_NOT_FOUND, |
|
detail="Model not found", |
|
) |
|
|
|
|
|
|
|
task_model_id = get_task_model_id(model_id) |
|
print(task_model_id) |
|
|
|
model = app.state.MODELS[task_model_id] |
|
|
|
template = ''' |
|
Your task is to reflect the speaker's likely facial expression through a fitting emoji. Interpret emotions from the message and reflect their facial expression using fitting, diverse emojis (e.g., 😊, 😢, 😡, 😱). |
|
|
|
Message: """{{prompt}}""" |
|
''' |
|
content = emoji_generation_template( |
|
template, |
|
form_data["prompt"], |
|
{ |
|
"name": user.name, |
|
"location": user.info.get("location") if user.info else None, |
|
}, |
|
) |
|
|
|
payload = { |
|
"model": task_model_id, |
|
"messages": [{"role": "user", "content": content}], |
|
"stream": False, |
|
**( |
|
{"max_tokens": 4} |
|
if app.state.MODELS[task_model_id]["owned_by"] == "ollama" |
|
else { |
|
"max_completion_tokens": 4, |
|
} |
|
), |
|
"chat_id": form_data.get("chat_id", None), |
|
"metadata": {"task": str(TASKS.EMOJI_GENERATION), "task_body": form_data}, |
|
} |
|
log.debug(payload) |
|
|
|
|
|
try: |
|
payload = filter_pipeline(payload, user) |
|
except Exception as e: |
|
if len(e.args) > 1: |
|
return JSONResponse( |
|
status_code=e.args[0], |
|
content={"detail": e.args[1]}, |
|
) |
|
else: |
|
return JSONResponse( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
content={"detail": str(e)}, |
|
) |
|
if "chat_id" in payload: |
|
del payload["chat_id"] |
|
|
|
return await generate_chat_completions(form_data=payload, user=user) |
|
|
|
|
|
@app.post("/api/task/moa/completions") |
|
async def generate_moa_response(form_data: dict, user=Depends(get_verified_user)): |
|
print("generate_moa_response") |
|
|
|
model_id = form_data["model"] |
|
if model_id not in app.state.MODELS: |
|
raise HTTPException( |
|
status_code=status.HTTP_404_NOT_FOUND, |
|
detail="Model not found", |
|
) |
|
|
|
|
|
|
|
task_model_id = get_task_model_id(model_id) |
|
print(task_model_id) |
|
|
|
model = app.state.MODELS[task_model_id] |
|
|
|
template = """You have been provided with a set of responses from various models to the latest user query: "{{prompt}}" |
|
|
|
Your task is to synthesize these responses into a single, high-quality response. It is crucial to critically evaluate the information provided in these responses, recognizing that some of it may be biased or incorrect. Your response should not simply replicate the given answers but should offer a refined, accurate, and comprehensive reply to the instruction. Ensure your response is well-structured, coherent, and adheres to the highest standards of accuracy and reliability. |
|
|
|
Responses from models: {{responses}}""" |
|
|
|
content = moa_response_generation_template( |
|
template, |
|
form_data["prompt"], |
|
form_data["responses"], |
|
) |
|
|
|
payload = { |
|
"model": task_model_id, |
|
"messages": [{"role": "user", "content": content}], |
|
"stream": form_data.get("stream", False), |
|
"chat_id": form_data.get("chat_id", None), |
|
"metadata": { |
|
"task": str(TASKS.MOA_RESPONSE_GENERATION), |
|
"task_body": form_data, |
|
}, |
|
} |
|
log.debug(payload) |
|
|
|
try: |
|
payload = filter_pipeline(payload, user) |
|
except Exception as e: |
|
if len(e.args) > 1: |
|
return JSONResponse( |
|
status_code=e.args[0], |
|
content={"detail": e.args[1]}, |
|
) |
|
else: |
|
return JSONResponse( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
content={"detail": str(e)}, |
|
) |
|
if "chat_id" in payload: |
|
del payload["chat_id"] |
|
|
|
return await generate_chat_completions(form_data=payload, user=user) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@app.get("/api/pipelines/list") |
|
async def get_pipelines_list(user=Depends(get_admin_user)): |
|
responses = await get_openai_models(raw=True) |
|
|
|
print(responses) |
|
urlIdxs = [ |
|
idx |
|
for idx, response in enumerate(responses) |
|
if response is not None and "pipelines" in response |
|
] |
|
|
|
return { |
|
"data": [ |
|
{ |
|
"url": openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx], |
|
"idx": urlIdx, |
|
} |
|
for urlIdx in urlIdxs |
|
] |
|
} |
|
|
|
|
|
@app.post("/api/pipelines/upload") |
|
async def upload_pipeline( |
|
urlIdx: int = Form(...), file: UploadFile = File(...), user=Depends(get_admin_user) |
|
): |
|
print("upload_pipeline", urlIdx, file.filename) |
|
|
|
if not (file.filename and file.filename.endswith(".py")): |
|
raise HTTPException( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
detail="Only Python (.py) files are allowed.", |
|
) |
|
|
|
upload_folder = f"{CACHE_DIR}/pipelines" |
|
os.makedirs(upload_folder, exist_ok=True) |
|
file_path = os.path.join(upload_folder, file.filename) |
|
|
|
r = None |
|
try: |
|
|
|
with open(file_path, "wb") as buffer: |
|
shutil.copyfileobj(file.file, buffer) |
|
|
|
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] |
|
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] |
|
|
|
headers = {"Authorization": f"Bearer {key}"} |
|
|
|
with open(file_path, "rb") as f: |
|
files = {"file": f} |
|
r = requests.post(f"{url}/pipelines/upload", headers=headers, files=files) |
|
|
|
r.raise_for_status() |
|
data = r.json() |
|
|
|
return {**data} |
|
except Exception as e: |
|
|
|
print(f"Connection error: {e}") |
|
|
|
detail = "Pipeline not found" |
|
status_code = status.HTTP_404_NOT_FOUND |
|
if r is not None: |
|
status_code = r.status_code |
|
try: |
|
res = r.json() |
|
if "detail" in res: |
|
detail = res["detail"] |
|
except Exception: |
|
pass |
|
|
|
raise HTTPException( |
|
status_code=status_code, |
|
detail=detail, |
|
) |
|
finally: |
|
|
|
if os.path.exists(file_path): |
|
os.remove(file_path) |
|
|
|
|
|
class AddPipelineForm(BaseModel): |
|
url: str |
|
urlIdx: int |
|
|
|
|
|
@app.post("/api/pipelines/add") |
|
async def add_pipeline(form_data: AddPipelineForm, user=Depends(get_admin_user)): |
|
r = None |
|
try: |
|
urlIdx = form_data.urlIdx |
|
|
|
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] |
|
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] |
|
|
|
headers = {"Authorization": f"Bearer {key}"} |
|
r = requests.post( |
|
f"{url}/pipelines/add", headers=headers, json={"url": form_data.url} |
|
) |
|
|
|
r.raise_for_status() |
|
data = r.json() |
|
|
|
return {**data} |
|
except Exception as e: |
|
|
|
print(f"Connection error: {e}") |
|
|
|
detail = "Pipeline not found" |
|
if r is not None: |
|
try: |
|
res = r.json() |
|
if "detail" in res: |
|
detail = res["detail"] |
|
except Exception: |
|
pass |
|
|
|
raise HTTPException( |
|
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), |
|
detail=detail, |
|
) |
|
|
|
|
|
class DeletePipelineForm(BaseModel): |
|
id: str |
|
urlIdx: int |
|
|
|
|
|
@app.delete("/api/pipelines/delete") |
|
async def delete_pipeline(form_data: DeletePipelineForm, user=Depends(get_admin_user)): |
|
r = None |
|
try: |
|
urlIdx = form_data.urlIdx |
|
|
|
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] |
|
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] |
|
|
|
headers = {"Authorization": f"Bearer {key}"} |
|
r = requests.delete( |
|
f"{url}/pipelines/delete", headers=headers, json={"id": form_data.id} |
|
) |
|
|
|
r.raise_for_status() |
|
data = r.json() |
|
|
|
return {**data} |
|
except Exception as e: |
|
|
|
print(f"Connection error: {e}") |
|
|
|
detail = "Pipeline not found" |
|
if r is not None: |
|
try: |
|
res = r.json() |
|
if "detail" in res: |
|
detail = res["detail"] |
|
except Exception: |
|
pass |
|
|
|
raise HTTPException( |
|
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), |
|
detail=detail, |
|
) |
|
|
|
|
|
@app.get("/api/pipelines") |
|
async def get_pipelines(urlIdx: Optional[int] = None, user=Depends(get_admin_user)): |
|
r = None |
|
try: |
|
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] |
|
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] |
|
|
|
headers = {"Authorization": f"Bearer {key}"} |
|
r = requests.get(f"{url}/pipelines", headers=headers) |
|
|
|
r.raise_for_status() |
|
data = r.json() |
|
|
|
return {**data} |
|
except Exception as e: |
|
|
|
print(f"Connection error: {e}") |
|
|
|
detail = "Pipeline not found" |
|
if r is not None: |
|
try: |
|
res = r.json() |
|
if "detail" in res: |
|
detail = res["detail"] |
|
except Exception: |
|
pass |
|
|
|
raise HTTPException( |
|
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), |
|
detail=detail, |
|
) |
|
|
|
|
|
@app.get("/api/pipelines/{pipeline_id}/valves") |
|
async def get_pipeline_valves( |
|
urlIdx: Optional[int], |
|
pipeline_id: str, |
|
user=Depends(get_admin_user), |
|
): |
|
r = None |
|
try: |
|
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] |
|
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] |
|
|
|
headers = {"Authorization": f"Bearer {key}"} |
|
r = requests.get(f"{url}/{pipeline_id}/valves", headers=headers) |
|
|
|
r.raise_for_status() |
|
data = r.json() |
|
|
|
return {**data} |
|
except Exception as e: |
|
|
|
print(f"Connection error: {e}") |
|
|
|
detail = "Pipeline not found" |
|
|
|
if r is not None: |
|
try: |
|
res = r.json() |
|
if "detail" in res: |
|
detail = res["detail"] |
|
except Exception: |
|
pass |
|
|
|
raise HTTPException( |
|
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), |
|
detail=detail, |
|
) |
|
|
|
|
|
@app.get("/api/pipelines/{pipeline_id}/valves/spec") |
|
async def get_pipeline_valves_spec( |
|
urlIdx: Optional[int], |
|
pipeline_id: str, |
|
user=Depends(get_admin_user), |
|
): |
|
r = None |
|
try: |
|
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] |
|
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] |
|
|
|
headers = {"Authorization": f"Bearer {key}"} |
|
r = requests.get(f"{url}/{pipeline_id}/valves/spec", headers=headers) |
|
|
|
r.raise_for_status() |
|
data = r.json() |
|
|
|
return {**data} |
|
except Exception as e: |
|
|
|
print(f"Connection error: {e}") |
|
|
|
detail = "Pipeline not found" |
|
if r is not None: |
|
try: |
|
res = r.json() |
|
if "detail" in res: |
|
detail = res["detail"] |
|
except Exception: |
|
pass |
|
|
|
raise HTTPException( |
|
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), |
|
detail=detail, |
|
) |
|
|
|
|
|
@app.post("/api/pipelines/{pipeline_id}/valves/update") |
|
async def update_pipeline_valves( |
|
urlIdx: Optional[int], |
|
pipeline_id: str, |
|
form_data: dict, |
|
user=Depends(get_admin_user), |
|
): |
|
r = None |
|
try: |
|
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] |
|
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] |
|
|
|
headers = {"Authorization": f"Bearer {key}"} |
|
r = requests.post( |
|
f"{url}/{pipeline_id}/valves/update", |
|
headers=headers, |
|
json={**form_data}, |
|
) |
|
|
|
r.raise_for_status() |
|
data = r.json() |
|
|
|
return {**data} |
|
except Exception as e: |
|
|
|
print(f"Connection error: {e}") |
|
|
|
detail = "Pipeline not found" |
|
|
|
if r is not None: |
|
try: |
|
res = r.json() |
|
if "detail" in res: |
|
detail = res["detail"] |
|
except Exception: |
|
pass |
|
|
|
raise HTTPException( |
|
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), |
|
detail=detail, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@app.get("/api/config") |
|
async def get_app_config(request: Request): |
|
user = None |
|
if "token" in request.cookies: |
|
token = request.cookies.get("token") |
|
data = decode_token(token) |
|
if data is not None and "id" in data: |
|
user = Users.get_user_by_id(data["id"]) |
|
|
|
return { |
|
"status": True, |
|
"name": WEBUI_NAME, |
|
"version": VERSION, |
|
"default_locale": str(DEFAULT_LOCALE), |
|
"oauth": { |
|
"providers": { |
|
name: config.get("name", name) |
|
for name, config in OAUTH_PROVIDERS.items() |
|
} |
|
}, |
|
"features": { |
|
"auth": WEBUI_AUTH, |
|
"auth_trusted_header": bool(webui_app.state.AUTH_TRUSTED_EMAIL_HEADER), |
|
"enable_signup": webui_app.state.config.ENABLE_SIGNUP, |
|
"enable_login_form": webui_app.state.config.ENABLE_LOGIN_FORM, |
|
**( |
|
{ |
|
"enable_web_search": retrieval_app.state.config.ENABLE_RAG_WEB_SEARCH, |
|
"enable_image_generation": images_app.state.config.ENABLED, |
|
"enable_community_sharing": webui_app.state.config.ENABLE_COMMUNITY_SHARING, |
|
"enable_message_rating": webui_app.state.config.ENABLE_MESSAGE_RATING, |
|
"enable_admin_export": ENABLE_ADMIN_EXPORT, |
|
"enable_admin_chat_access": ENABLE_ADMIN_CHAT_ACCESS, |
|
} |
|
if user is not None |
|
else {} |
|
), |
|
}, |
|
**( |
|
{ |
|
"default_models": webui_app.state.config.DEFAULT_MODELS, |
|
"default_prompt_suggestions": webui_app.state.config.DEFAULT_PROMPT_SUGGESTIONS, |
|
"audio": { |
|
"tts": { |
|
"engine": audio_app.state.config.TTS_ENGINE, |
|
"voice": audio_app.state.config.TTS_VOICE, |
|
"split_on": audio_app.state.config.TTS_SPLIT_ON, |
|
}, |
|
"stt": { |
|
"engine": audio_app.state.config.STT_ENGINE, |
|
}, |
|
}, |
|
"file": { |
|
"max_size": retrieval_app.state.config.FILE_MAX_SIZE, |
|
"max_count": retrieval_app.state.config.FILE_MAX_COUNT, |
|
}, |
|
"permissions": {**webui_app.state.config.USER_PERMISSIONS}, |
|
} |
|
if user is not None |
|
else {} |
|
), |
|
} |
|
|
|
|
|
@app.get("/api/config/model/filter") |
|
async def get_model_filter_config(user=Depends(get_admin_user)): |
|
return { |
|
"enabled": app.state.config.ENABLE_MODEL_FILTER, |
|
"models": app.state.config.MODEL_FILTER_LIST, |
|
} |
|
|
|
|
|
class ModelFilterConfigForm(BaseModel): |
|
enabled: bool |
|
models: list[str] |
|
|
|
|
|
@app.post("/api/config/model/filter") |
|
async def update_model_filter_config( |
|
form_data: ModelFilterConfigForm, user=Depends(get_admin_user) |
|
): |
|
app.state.config.ENABLE_MODEL_FILTER = form_data.enabled |
|
app.state.config.MODEL_FILTER_LIST = form_data.models |
|
|
|
return { |
|
"enabled": app.state.config.ENABLE_MODEL_FILTER, |
|
"models": app.state.config.MODEL_FILTER_LIST, |
|
} |
|
|
|
|
|
|
|
|
|
|
|
@app.get("/api/webhook") |
|
async def get_webhook_url(user=Depends(get_admin_user)): |
|
return { |
|
"url": app.state.config.WEBHOOK_URL, |
|
} |
|
|
|
|
|
class UrlForm(BaseModel): |
|
url: str |
|
|
|
|
|
@app.post("/api/webhook") |
|
async def update_webhook_url(form_data: UrlForm, user=Depends(get_admin_user)): |
|
app.state.config.WEBHOOK_URL = form_data.url |
|
webui_app.state.WEBHOOK_URL = app.state.config.WEBHOOK_URL |
|
return {"url": app.state.config.WEBHOOK_URL} |
|
|
|
|
|
@app.get("/api/version") |
|
async def get_app_version(): |
|
return { |
|
"version": VERSION, |
|
} |
|
|
|
|
|
@app.get("/api/changelog") |
|
async def get_app_changelog(): |
|
return {key: CHANGELOG[key] for idx, key in enumerate(CHANGELOG) if idx < 5} |
|
|
|
|
|
@app.get("/api/version/updates") |
|
async def get_app_latest_release_version(): |
|
if OFFLINE_MODE: |
|
log.debug( |
|
f"Offline mode is enabled, returning current version as latest version" |
|
) |
|
return {"current": VERSION, "latest": VERSION} |
|
try: |
|
timeout = aiohttp.ClientTimeout(total=1) |
|
async with aiohttp.ClientSession(timeout=timeout, trust_env=True) as session: |
|
async with session.get( |
|
"https://api.github.com/repos/open-webui/open-webui/releases/latest" |
|
) as response: |
|
response.raise_for_status() |
|
data = await response.json() |
|
latest_version = data["tag_name"] |
|
|
|
return {"current": VERSION, "latest": latest_version[1:]} |
|
except Exception as e: |
|
log.debug(e) |
|
return {"current": VERSION, "latest": VERSION} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if len(OAUTH_PROVIDERS) > 0: |
|
app.add_middleware( |
|
SessionMiddleware, |
|
secret_key=WEBUI_SECRET_KEY, |
|
session_cookie="oui-session", |
|
same_site=WEBUI_SESSION_COOKIE_SAME_SITE, |
|
https_only=WEBUI_SESSION_COOKIE_SECURE, |
|
) |
|
|
|
|
|
@app.get("/oauth/{provider}/login") |
|
async def oauth_login(provider: str, request: Request): |
|
return await oauth_manager.handle_login(provider, request) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@app.get("/oauth/{provider}/callback") |
|
async def oauth_callback(provider: str, request: Request, response: Response): |
|
return await oauth_manager.handle_callback(provider, request, response) |
|
|
|
|
|
@app.get("/manifest.json") |
|
async def get_manifest_json(): |
|
return { |
|
"name": WEBUI_NAME, |
|
"short_name": WEBUI_NAME, |
|
"description": "Open WebUI is an open, extensible, user-friendly interface for AI that adapts to your workflow.", |
|
"start_url": "/", |
|
"display": "standalone", |
|
"background_color": "#343541", |
|
"orientation": "any", |
|
"icons": [ |
|
{ |
|
"src": "/static/logo.png", |
|
"type": "image/png", |
|
"sizes": "500x500", |
|
"purpose": "any", |
|
}, |
|
{ |
|
"src": "/static/logo.png", |
|
"type": "image/png", |
|
"sizes": "500x500", |
|
"purpose": "maskable", |
|
}, |
|
], |
|
} |
|
|
|
|
|
@app.get("/opensearch.xml") |
|
async def get_opensearch_xml(): |
|
xml_content = rf""" |
|
<OpenSearchDescription xmlns="http://a9.com/-/spec/opensearch/1.1/" xmlns:moz="http://www.mozilla.org/2006/browser/search/"> |
|
<ShortName>{WEBUI_NAME}</ShortName> |
|
<Description>Search {WEBUI_NAME}</Description> |
|
<InputEncoding>UTF-8</InputEncoding> |
|
<Image width="16" height="16" type="image/x-icon">{WEBUI_URL}/static/favicon.png</Image> |
|
<Url type="text/html" method="get" template="{WEBUI_URL}/?q={"{searchTerms}"}"/> |
|
<moz:SearchForm>{WEBUI_URL}</moz:SearchForm> |
|
</OpenSearchDescription> |
|
""" |
|
return Response(content=xml_content, media_type="application/xml") |
|
|
|
|
|
@app.get("/health") |
|
async def healthcheck(): |
|
return {"status": True} |
|
|
|
|
|
@app.get("/health/db") |
|
async def healthcheck_with_db(): |
|
Session.execute(text("SELECT 1;")).all() |
|
return {"status": True} |
|
|
|
|
|
app.mount("/static", StaticFiles(directory=STATIC_DIR), name="static") |
|
app.mount("/cache", StaticFiles(directory=CACHE_DIR), name="cache") |
|
|
|
|
|
if os.path.exists(FRONTEND_BUILD_DIR): |
|
mimetypes.add_type("text/javascript", ".js") |
|
app.mount( |
|
"/", |
|
SPAStaticFiles(directory=FRONTEND_BUILD_DIR, html=True), |
|
name="spa-static-files", |
|
) |
|
else: |
|
log.warning( |
|
f"Frontend build directory not found at '{FRONTEND_BUILD_DIR}'. Serving API only." |
|
) |
|
|