SenseVoice / app.py
cuio's picture
Update app.py
5613fc5 verified
# coding=utf-8
import os
import librosa
import base64
import io
import gradio as gr
import re
import numpy as np
import torch
import torchaudio
import spaces
from funasr import AutoModel
model = "FunAudioLLM/SenseVoiceSmall"
model = AutoModel(model=model,
vad_model="iic/speech_fsmn_vad_zh-cn-16k-common-pytorch",
vad_kwargs={"max_single_segment_time": 30000},
hub="hf",
device="cuda"
)
import re
emo_dict = {
"<|HAPPY|>": "๐Ÿ˜Š",
"<|SAD|>": "๐Ÿ˜”",
"<|ANGRY|>": "๐Ÿ˜ก",
"<|NEUTRAL|>": "",
"<|FEARFUL|>": "๐Ÿ˜ฐ",
"<|DISGUSTED|>": "๐Ÿคข",
"<|SURPRISED|>": "๐Ÿ˜ฎ",
}
event_dict = {
"<|BGM|>": "๐ŸŽผ",
"<|Speech|>": "",
"<|Applause|>": "๐Ÿ‘",
"<|Laughter|>": "๐Ÿ˜€",
"<|Cry|>": "๐Ÿ˜ญ",
"<|Sneeze|>": "๐Ÿคง",
"<|Breath|>": "",
"<|Cough|>": "๐Ÿคง",
}
emoji_dict = {
"<|nospeech|><|Event_UNK|>": "โ“",
"<|zh|>": "",
"<|en|>": "",
"<|yue|>": "",
"<|ja|>": "",
"<|ko|>": "",
"<|nospeech|>": "",
"<|HAPPY|>": "๐Ÿ˜Š",
"<|SAD|>": "๐Ÿ˜”",
"<|ANGRY|>": "๐Ÿ˜ก",
"<|NEUTRAL|>": "",
"<|BGM|>": "๐ŸŽผ",
"<|Speech|>": "",
"<|Applause|>": "๐Ÿ‘",
"<|Laughter|>": "๐Ÿ˜€",
"<|FEARFUL|>": "๐Ÿ˜ฐ",
"<|DISGUSTED|>": "๐Ÿคข",
"<|SURPRISED|>": "๐Ÿ˜ฎ",
"<|Cry|>": "๐Ÿ˜ญ",
"<|EMO_UNKNOWN|>": "",
"<|Sneeze|>": "๐Ÿคง",
"<|Breath|>": "",
"<|Cough|>": "๐Ÿ˜ท",
"<|Sing|>": "",
"<|Speech_Noise|>": "",
"<|withitn|>": "",
"<|woitn|>": "",
"<|GBG|>": "",
"<|Event_UNK|>": "",
}
lang_dict = {
"<|zh|>": "<|lang|>",
"<|en|>": "<|lang|>",
"<|yue|>": "<|lang|>",
"<|ja|>": "<|lang|>",
"<|ko|>": "<|lang|>",
"<|nospeech|>": "<|lang|>",
}
emo_set = {"๐Ÿ˜Š", "๐Ÿ˜”", "๐Ÿ˜ก", "๐Ÿ˜ฐ", "๐Ÿคข", "๐Ÿ˜ฎ"}
event_set = {"๐ŸŽผ", "๐Ÿ‘", "๐Ÿ˜€", "๐Ÿ˜ญ", "๐Ÿคง", "๐Ÿ˜ท",}
def format_str(s):
for sptk in emoji_dict:
s = s.replace(sptk, emoji_dict[sptk])
return s
def format_str_v2(s):
sptk_dict = {}
for sptk in emoji_dict:
sptk_dict[sptk] = s.count(sptk)
s = s.replace(sptk, "")
emo = "<|NEUTRAL|>"
for e in emo_dict:
if sptk_dict[e] > sptk_dict[emo]:
emo = e
for e in event_dict:
if sptk_dict[e] > 0:
s = event_dict[e] + s
s = s + emo_dict[emo]
for emoji in emo_set.union(event_set):
s = s.replace(" " + emoji, emoji)
s = s.replace(emoji + " ", emoji)
return s.strip()
def format_str_v3(s):
def get_emo(s):
return s[-1] if s[-1] in emo_set else None
def get_event(s):
return s[0] if s[0] in event_set else None
s = s.replace("<|nospeech|><|Event_UNK|>", "โ“")
for lang in lang_dict:
s = s.replace(lang, "<|lang|>")
s_list = [format_str_v2(s_i).strip(" ") for s_i in s.split("<|lang|>")]
new_s = " " + s_list[0]
cur_ent_event = get_event(new_s)
for i in range(1, len(s_list)):
if len(s_list[i]) == 0:
continue
if get_event(s_list[i]) == cur_ent_event and get_event(s_list[i]) != None:
s_list[i] = s_list[i][1:]
#else:
cur_ent_event = get_event(s_list[i])
if get_emo(s_list[i]) != None and get_emo(s_list[i]) == get_emo(new_s):
new_s = new_s[:-1]
new_s += s_list[i].strip().lstrip()
new_s = new_s.replace("The.", " ")
return new_s.strip()
@spaces.GPU
def model_inference(input_wav, language, fs=16000):
# task_abbr = {"Speech Recognition": "ASR", "Rich Text Transcription": ("ASR", "AED", "SER")}
language_abbr = {"auto": "auto", "zh": "zh", "en": "en", "yue": "yue", "ja": "ja", "ko": "ko",
"nospeech": "nospeech"}
# task = "Speech Recognition" if task is None else task
language = "auto" if len(language) < 1 else language
selected_language = language_abbr[language]
# selected_task = task_abbr.get(task)
# print(f"input_wav: {type(input_wav)}, {input_wav[1].shape}, {input_wav}")
if isinstance(input_wav, tuple):
fs, input_wav = input_wav
input_wav = input_wav.astype(np.float32) / np.iinfo(np.int16).max
if len(input_wav.shape) > 1:
input_wav = input_wav.mean(-1)
if fs != 16000:
print(f"audio_fs: {fs}")
resampler = torchaudio.transforms.Resample(fs, 16000)
input_wav_t = torch.from_numpy(input_wav).to(torch.float32)
input_wav = resampler(input_wav_t[None, :])[0, :].numpy()
merge_vad = True #False if selected_task == "ASR" else True
print(f"language: {language}, merge_vad: {merge_vad}")
text = model.generate(input=input_wav,
cache={},
language=language,
use_itn=True,
batch_size_s=500, merge_vad=merge_vad)
print(text)
text = text[0]["text"]
text = format_str_v3(text)
print(text)
return text
audio_examples = [
["example/zh.mp3", "zh"],
["example/yue.mp3", "yue"],
["example/en.mp3", "en"],
["example/ja.mp3", "ja"],
["example/ko.mp3", "ko"],
["example/emo_1.wav", "auto"],
["example/emo_2.wav", "auto"],
["example/emo_3.wav", "auto"],
["example/rich_1.wav", "auto"],
["example/rich_2.wav", "auto"],
["example/longwav_1.wav", "auto"],
["example/longwav_2.wav", "auto"],
["example/longwav_3.wav", "auto"],
]
html_content = """
<div>
<h2 style="font-size: 22px;margin-left: 0px;">Voice Understanding Model: SenseVoice-Small</h2>
<p style="font-size: 18px;margin-left: 20px;">SenseVoice-Small is an encoder-only speech foundation model designed for rapid voice understanding. It encompasses a variety of features including automatic speech recognition (ASR), spoken language identification (LID), speech emotion recognition (SER), and acoustic event detection (AED). SenseVoice-Small supports multilingual recognition for Chinese, English, Cantonese, Japanese, and Korean. Additionally, it offers exceptionally low inference latency, performing 7 times faster than Whisper-small and 17 times faster than Whisper-large.</p>
<h2 style="font-size: 22px;margin-left: 0px;">Usage</h2> <p style="font-size: 18px;margin-left: 20px;">Upload an audio file or input through a microphone, then select the task and language. the audio is transcribed into corresponding text along with associated emotions (๐Ÿ˜Š happy, ๐Ÿ˜ก angry/exicting, ๐Ÿ˜” sad) and types of sound events (๐Ÿ˜€ laughter, ๐ŸŽผ music, ๐Ÿ‘ applause, ๐Ÿคง cough&sneeze, ๐Ÿ˜ญ cry). The event labels are placed in the front of the text and the emotion are in the back of the text.</p>
<p style="font-size: 18px;margin-left: 20px;">Recommended audio input duration is below 30 seconds. For audio longer than 30 seconds, local deployment is recommended.</p>
<h2 style="font-size: 22px;margin-left: 0px;">Repo</h2>
<p style="font-size: 18px;margin-left: 20px;"><a href="https://github.com/FunAudioLLM/SenseVoice" target="_blank">SenseVoice</a>: multilingual speech understanding model</p>
<p style="font-size: 18px;margin-left: 20px;"><a href="https://github.com/modelscope/FunASR" target="_blank">FunASR</a>: fundamental speech recognition toolkit</p>
<p style="font-size: 18px;margin-left: 20px;"><a href="https://github.com/FunAudioLLM/CosyVoice" target="_blank">CosyVoice</a>: high-quality multilingual TTS model</p>
</div>
"""
def launch():
with gr.Blocks(theme=gr.themes.Soft()) as demo:
# gr.Markdown(description)
gr.HTML(html_content)
with gr.Row():
with gr.Column():
audio_inputs = gr.Audio(label="Upload audio or use the microphone")
with gr.Accordion("Configuration"):
language_inputs = gr.Dropdown(choices=["auto", "zh", "en", "yue", "ja", "ko", "nospeech"],
value="auto",
label="Language")
fn_button = gr.Button("Start", variant="primary")
text_outputs = gr.Textbox(label="Results")
gr.Examples(examples=audio_examples, inputs=[audio_inputs, language_inputs], examples_per_page=20)
fn_button.click(model_inference, inputs=[audio_inputs, language_inputs], outputs=text_outputs)
demo.launch(auth=[("admin", "pass1234"),("a", "1")])
if __name__ == "__main__":
# iface.launch()
launch()