Ulf Hammerschmied commited on
Commit
05fc356
·
1 Parent(s): 77f43a9

export.pkl -> model.pkl

Browse files
Files changed (1) hide show
  1. app.py +18 -29
app.py CHANGED
@@ -1,37 +1,26 @@
1
  import gradio as gr
2
- import os
3
  from fastai.vision.core import PILImage
4
  from fastai.learner import load_learner
5
- import pathlib
6
 
7
- value = pathlib.Path().resolve()
8
- value2 = os.listdir()
9
 
 
 
10
 
11
- def greet(name):
12
- return "Hello " + name + "!"
13
 
 
 
 
 
14
 
15
- demo = gr.Interface(fn=greet, inputs=gr.Textbox(lines=2, placeholder=str(value2)), outputs="text")
16
- demo.launch()
17
- # learn = load_learner('export.pkl')
18
- # labels = learn.dls.vocab
19
- #
20
- #
21
- # def predict(img):
22
- # img = PILImage.create(img)
23
- # pred, pred_idx, probs = learn.predict(img)
24
- # return {labels[i]: float(probs[i]) for i in range(len(labels))}
25
- #
26
- #
27
- # title = "Bear Classifier"
28
- # description = ("A bear classifier trained on black/grizzly/teddy bear images downloaded from internet with fastai. "
29
- # "Created as a demo for Gradio and HuggingFace Spaces.")
30
- # examples = ['black.jpg', 'grizzly.jpg', 'teddy.jpg']
31
- # grif = gr.Interface(fn=predict,
32
- # inputs=gr.inputs.Image(shape=(512, 512)),
33
- # outputs=gr.outputs.Label(num_top_classes=3),
34
- # title=title,
35
- # description=description,
36
- # examples=examples)
37
- # grif.launch(share=True)
 
1
  import gradio as gr
 
2
  from fastai.vision.core import PILImage
3
  from fastai.learner import load_learner
 
4
 
 
 
5
 
6
+ learn = load_learner('model.pkl')
7
+ labels = learn.dls.vocab
8
 
 
 
9
 
10
+ def predict(img):
11
+ img = PILImage.create(img)
12
+ pred, pred_idx, probs = learn.predict(img)
13
+ return {labels[i]: float(probs[i]) for i in range(len(labels))}
14
 
15
+
16
+ title = "Bear Classifier"
17
+ description = ("A bear classifier trained on black/grizzly/teddy bear images downloaded from internet with fastai. "
18
+ "Created as a demo for Gradio and HuggingFace Spaces.")
19
+ examples = ['black.jpg', 'grizzly.jpg', 'teddy.jpg']
20
+ grif = gr.Interface(fn=predict,
21
+ inputs=gr.inputs.Image(shape=(512, 512)),
22
+ outputs=gr.outputs.Label(num_top_classes=3),
23
+ title=title,
24
+ description=description,
25
+ examples=examples)
26
+ grif.launch(share=True)