test / offline_asr.py
csukuangfj's picture
First commit
b8e6a49
raw
history blame
13.9 kB
#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# Copied from https://github.com/k2-fsa/sherpa/blob/master/sherpa/bin/conformer_rnnt/offline_asr.py
#
# See LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A standalone script for offline ASR recognition.
It loads a torchscript model, decodes the given wav files, and exits.
Usage:
./offline_asr.py --help
For BPE based models (e.g., LibriSpeech):
./offline_asr.py \
--nn-model-filename /path/to/cpu_jit.pt \
--bpe-model-filename /path/to/bpe.model \
--decoding-method greedy_search \
./foo.wav \
./bar.wav \
./foobar.wav
For character based models (e.g., aishell):
./offline.py \
--nn-model-filename /path/to/cpu_jit.pt \
--token-filename /path/to/lang_char/tokens.txt \
--decoding-method greedy_search \
./foo.wav \
./bar.wav \
./foobar.wav
Note: We provide pre-trained models for testing.
(1) Pre-trained model with the LibriSpeech dataset
sudo apt-get install git-lfs
git lfs install
git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13
nn_model_filename=./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/exp/cpu_jit-torch-1.6.0.pt
bpe_model=./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/data/lang_bpe_500/bpe.model
wav1=./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1089-134686-0001.wav
wav2=./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1221-135766-0001.wav
wav3=./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1221-135766-0002.wav
sherpa/bin/conformer_rnnt/offline_asr.py \
--nn-model-filename $nn_model_filename \
--bpe-model $bpe_model \
$wav1 \
$wav2 \
$wav3
(2) Pre-trained model with the aishell dataset
sudo apt-get install git-lfs
git lfs install
git clone https://huggingface.co/csukuangfj/icefall-aishell-pruned-transducer-stateless3-2022-06-20
nn_model_filename=./icefall-aishell-pruned-transducer-stateless3-2022-06-20/exp/cpu_jit-epoch-29-avg-5-torch-1.6.0.pt
token_filename=./icefall-aishell-pruned-transducer-stateless3-2022-06-20/data/lang_char/tokens.txt
wav1=./icefall-aishell-pruned-transducer-stateless3-2022-06-20/test_wavs/BAC009S0764W0121.wav
wav2=./icefall-aishell-pruned-transducer-stateless3-2022-06-20/test_wavs/BAC009S0764W0122.wav
wav3=./icefall-aishell-pruned-transducer-stateless3-2022-06-20/test_wavs/BAC009S0764W0123.wav
sherpa/bin/conformer_rnnt/offline_asr.py \
--nn-model-filename $nn_model_filename \
--token-filename $token_filename \
$wav1 \
$wav2 \
$wav3
"""
import argparse
import functools
import logging
from typing import List, Optional, Union
import k2
import kaldifeat
import sentencepiece as spm
import torch
import torchaudio
from sherpa import RnntConformerModel
from decode import run_model_and_do_greedy_search, run_model_and_do_modified_beam_search
def get_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--nn-model-filename",
type=str,
help="""The torchscript model. You can use
icefall/egs/librispeech/ASR/pruned_transducer_statelessX/export.py \
--jit=1
to generate this model.
""",
)
parser.add_argument(
"--bpe-model-filename",
type=str,
help="""The BPE model
You can find it in the directory egs/librispeech/ASR/data/lang_bpe_xxx
from icefall,
where xxx is the number of BPE tokens you used to train the model.
Note: Use it only when your model is using BPE. You don't need to
provide it if you provide `--token-filename`
""",
)
parser.add_argument(
"--token-filename",
type=str,
help="""Filename for tokens.txt
You can find it in the directory
egs/aishell/ASR/data/lang_char/tokens.txt from icefall.
Note: You don't need to provide it if you provide `--bpe-model`
""",
)
parser.add_argument(
"--decoding-method",
type=str,
default="greedy_search",
help="""Decoding method to use. Currently, only greedy_search and
modified_beam_search are implemented.
""",
)
parser.add_argument(
"--num-active-paths",
type=int,
default=4,
help="""Used only when decoding_method is modified_beam_search.
It specifies number of active paths for each utterance. Due to
merging paths with identical token sequences, the actual number
may be less than "num_active_paths".
""",
)
parser.add_argument(
"--sample-rate",
type=int,
default=16000,
help="The expected sample rate of the input sound files",
)
parser.add_argument(
"sound_files",
type=str,
nargs="+",
help="The input sound file(s) to transcribe. "
"Supported formats are those supported by torchaudio.load(). "
"For example, wav and flac are supported. "
"The sample rate has to equal to `--sample-rate`.",
)
return parser.parse_args()
def read_sound_files(
filenames: List[str],
expected_sample_rate: int,
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
assert sample_rate == expected_sample_rate, (
f"expected sample rate: {expected_sample_rate}. " f"Given: {sample_rate}"
)
# We use only the first channel
ans.append(wave[0])
return ans
class OfflineAsr(object):
def __init__(
self,
nn_model_filename: str,
bpe_model_filename: Optional[str] = None,
token_filename: Optional[str] = None,
decoding_method: str = "greedy_search",
num_active_paths: int = 4,
sample_rate: int = 16000,
device: Union[str, torch.device] = "cpu",
):
"""
Args:
nn_model_filename:
Path to the torch script model.
bpe_model_filename:
Path to the BPE model. If it is None, you have to provide
`token_filename`.
token_filename:
Path to tokens.txt. If it is None, you have to provide
`bpe_model_filename`.
sample_rate:
Expected sample rate of the feature extractor.
device:
The device to use for computation.
"""
self.model = RnntConformerModel(
filename=nn_model_filename,
device=device,
optimize_for_inference=False,
)
if bpe_model_filename:
self.sp = spm.SentencePieceProcessor()
self.sp.load(bpe_model_filename)
else:
assert token_filename is not None, token_filename
self.token_table = k2.SymbolTable.from_file(token_filename)
self.feature_extractor = self._build_feature_extractor(
sample_rate=sample_rate,
device=device,
)
self.device = device
def _build_feature_extractor(
self,
sample_rate: int = 16000,
device: Union[str, torch.device] = "cpu",
) -> kaldifeat.OfflineFeature:
"""Build a fbank feature extractor for extracting features.
Args:
sample_rate:
Expected sample rate of the feature extractor.
device:
The device to use for computation.
Returns:
Return a fbank feature extractor.
"""
opts = kaldifeat.FbankOptions()
opts.device = device
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = sample_rate
opts.mel_opts.num_bins = 80
fbank = kaldifeat.Fbank(opts)
return fbank
def decode_waves(
self,
waves: List[torch.Tensor],
decoding_method: str,
num_active_paths: int,
) -> List[List[str]]:
"""
Args:
waves:
A list of 1-D torch.float32 tensors containing audio samples.
wavs[i] contains audio samples for the i-th utterance.
Note:
Whether it should be in the range [-32768, 32767] or be normalized
to [-1, 1] depends on which range you used for your training data.
For instance, if your training data used [-32768, 32767],
then the given waves have to contain samples in this range.
All models trained in icefall use the normalized range [-1, 1].
decoding_method:
The decoding method to use. Currently, only greedy_search and
modified_beam_search are implemented.
num_active_paths:
Used only when decoding_method is modified_beam_search.
It specifies number of active paths for each utterance. Due to
merging paths with identical token sequences, the actual number
may be less than "num_active_paths".
Returns:
Return a list of decoded results. `ans[i]` contains the decoded
results for `wavs[i]`.
"""
assert decoding_method in (
"greedy_search",
"modified_beam_search",
), decoding_method
if decoding_method == "greedy_search":
nn_and_decoding_func = run_model_and_do_greedy_search
elif decoding_method == "modified_beam_search":
nn_and_decoding_func = functools.partial(
run_model_and_do_modified_beam_search,
num_active_paths=num_active_paths,
)
else:
raise ValueError(
f"Unsupported decoding_method: {decoding_method} "
"Please use greedy_search or modified_beam_search"
)
waves = [w.to(self.device) for w in waves]
features = self.feature_extractor(waves)
tokens = nn_and_decoding_func(self.model, features)
if hasattr(self, "sp"):
results = self.sp.decode(tokens)
else:
results = [[self.token_table[i] for i in hyp] for hyp in tokens]
blank = chr(0x2581)
results = ["".join(r) for r in results]
results = [r.replace(blank, " ") for r in results]
return results
@torch.no_grad()
def main():
args = get_args()
logging.info(vars(args))
nn_model_filename = args.nn_model_filename
bpe_model_filename = args.bpe_model_filename
token_filename = args.token_filename
decoding_method = args.decoding_method
num_active_paths = args.num_active_paths
sample_rate = args.sample_rate
sound_files = args.sound_files
assert decoding_method in ("greedy_search", "modified_beam_search"), decoding_method
if decoding_method == "modified_beam_search":
assert num_active_paths >= 1, num_active_paths
if bpe_model_filename:
assert token_filename is None
if token_filename:
assert bpe_model_filename is None
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
offline_asr = OfflineAsr(
nn_model_filename=nn_model_filename,
bpe_model_filename=bpe_model_filename,
token_filename=token_filename,
decoding_method=decoding_method,
num_active_paths=num_active_paths,
sample_rate=sample_rate,
device=device,
)
waves = read_sound_files(
filenames=sound_files,
expected_sample_rate=sample_rate,
)
logging.info("Decoding started.")
hyps = offline_asr.decode_waves(waves)
s = "\n"
for filename, hyp in zip(sound_files, hyps):
s += f"{filename}:\n{hyp}\n\n"
logging.info(s)
logging.info("Decoding done.")
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
# See https://github.com/pytorch/pytorch/issues/38342
# and https://github.com/pytorch/pytorch/issues/33354
#
# If we don't do this, the delay increases whenever there is
# a new request that changes the actual batch size.
# If you use `py-spy dump --pid <server-pid> --native`, you will
# see a lot of time is spent in re-compiling the torch script model.
torch._C._jit_set_profiling_executor(False)
torch._C._jit_set_profiling_mode(False)
torch._C._set_graph_executor_optimize(False)
"""
// Use the following in C++
torch::jit::getExecutorMode() = false;
torch::jit::getProfilingMode() = false;
torch::jit::setGraphExecutorOptimize(false);
"""
if __name__ == "__main__":
torch.manual_seed(20220609)
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" # noqa
)
logging.basicConfig(format=formatter, level=logging.INFO)
main()