Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# | |
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) | |
# | |
# See LICENSE for clarification regarding multiple authors | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# References: | |
# https://gradio.app/docs/#dropdown | |
import logging | |
import os | |
import time | |
from datetime import datetime | |
import gradio as gr | |
import torchaudio | |
from model import get_pretrained_model, language_to_models, sample_rate | |
languages = list(language_to_models.keys()) | |
def convert_to_wav(in_filename: str) -> str: | |
"""Convert the input audio file to a wave file""" | |
out_filename = in_filename + ".wav" | |
logging.info(f"Converting '{in_filename}' to '{out_filename}'") | |
_ = os.system(f"ffmpeg -hide_banner -i '{in_filename}' '{out_filename}'") | |
return out_filename | |
def build_html_output(s: str, style: str = "result_item_success"): | |
return f""" | |
<div class='result'> | |
<div class='result_item {style}'> | |
{s} | |
</div> | |
</div> | |
""" | |
def process_uploaded_file( | |
in_filename: str, | |
language: str, | |
repo_id: str, | |
decoding_method: str, | |
num_active_paths: int, | |
): | |
if in_filename is None or in_filename == "": | |
return "", build_html_output( | |
"Please first upload a file and then click " | |
'the button "submit for recognition"', | |
"result_item_error", | |
) | |
logging.info(f"Processing uploaded file: {in_filename}") | |
try: | |
return process( | |
in_filename=in_filename, | |
language=language, | |
repo_id=repo_id, | |
decoding_method=decoding_method, | |
num_active_paths=num_active_paths, | |
) | |
except Exception as e: | |
logging.info(str(e)) | |
return "", build_html_output(str(e), "result_item_error") | |
def process_microphone( | |
in_filename: str, | |
language: str, | |
repo_id: str, | |
decoding_method: str, | |
num_active_paths: int, | |
): | |
if in_filename is None or in_filename == "": | |
return "", build_html_output( | |
"Please first click 'Record from microphone', speak, " | |
"click 'Stop recording', and then " | |
"click the button 'submit for recognition'", | |
"result_item_error", | |
) | |
logging.info(f"Processing microphone: {in_filename}") | |
try: | |
return process( | |
in_filename=in_filename, | |
language=language, | |
repo_id=repo_id, | |
decoding_method=decoding_method, | |
num_active_paths=num_active_paths, | |
) | |
except Exception as e: | |
logging.info(str(e)) | |
return "", build_html_output(str(e), "result_item_error") | |
def process( | |
in_filename: str, | |
language: str, | |
repo_id: str, | |
decoding_method: str, | |
num_active_paths: int, | |
): | |
logging.info(f"in_filename: {in_filename}") | |
logging.info(f"language: {language}") | |
logging.info(f"repo_id: {repo_id}") | |
logging.info(f"decoding_method: {decoding_method}") | |
logging.info(f"num_active_paths: {num_active_paths}") | |
filename = convert_to_wav(in_filename) | |
now = datetime.now() | |
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f") | |
logging.info(f"Started at {date_time}") | |
start = time.time() | |
wave, wave_sample_rate = torchaudio.load(filename) | |
if wave_sample_rate != sample_rate: | |
logging.info( | |
f"Expected sample rate: {sample_rate}. Given: {wave_sample_rate}. " | |
f"Resampling to {sample_rate}." | |
) | |
wave = torchaudio.functional.resample( | |
wave, | |
orig_freq=wave_sample_rate, | |
new_freq=sample_rate, | |
) | |
wave = wave[0] # use only the first channel. | |
hyp = get_pretrained_model(repo_id).decode_waves( | |
[wave], | |
decoding_method=decoding_method, | |
num_active_paths=num_active_paths, | |
)[0] | |
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f") | |
end = time.time() | |
duration = wave.shape[0] / sample_rate | |
rtf = (end - start) / duration | |
logging.info(f"Finished at {date_time} s. Elapsed: {end - start: .3f} s") | |
info = f""" | |
Wave duration : {duration: .3f} s <br/> | |
Processing time: {end - start: .3f} s <br/> | |
RTF: {end - start: .3f}/{duration: .3f} = {(end - start)/duration:.3f} <br/> | |
""" | |
logging.info(info) | |
logging.info(f"hyp:\n{hyp}") | |
return hyp, build_html_output(info) | |
title = "# Automatic Speech Recognition with Next-gen Kaldi" | |
description = """ | |
This space shows how to do automatic speech recognition with Next-gen Kaldi. | |
See more information by visiting the following links: | |
- <https://github.com/k2-fsa/icefall> | |
- <https://github.com/k2-fsa/sherpa> | |
- <https://github.com/k2-fsa/k2> | |
- <https://github.com/lhotse-speech/lhotse> | |
""" | |
# css style is copied from | |
# https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L113 | |
css = """ | |
.result {display:flex;flex-direction:column} | |
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%} | |
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start} | |
.result_item_error {background-color:#ff7070;color:white;align-self:start} | |
""" | |
def update_model_dropdown(language: str): | |
if language in language_to_models: | |
choices = language_to_models[language] | |
return gr.Dropdown.update(choices=choices, value=choices[0]) | |
raise ValueError(f"Unsupported language: {language}") | |
demo = gr.Blocks(css=css) | |
with demo: | |
gr.Markdown(title) | |
language_choices = list(language_to_models.keys()) | |
language_radio = gr.Radio( | |
label="Language", | |
choices=language_choices, | |
value=language_choices[0], | |
) | |
model_dropdown = gr.Dropdown( | |
choices=language_to_models[language_choices[0]], | |
label="Select a model", | |
value=language_to_models[language_choices[0]][0], | |
) | |
language_radio.change( | |
update_model_dropdown, | |
inputs=language_radio, | |
outputs=model_dropdown, | |
) | |
decoding_method_radio = gr.Radio( | |
label="Decoding method", | |
choices=["greedy_search", "modified_beam_search"], | |
value="greedy_search", | |
) | |
num_active_paths_slider = gr.Slider( | |
minimum=1, | |
value=4, | |
step=1, | |
label="Number of active paths for modified_beam_search", | |
) | |
with gr.Tabs(): | |
with gr.TabItem("Upload from disk"): | |
uploaded_file = gr.Audio( | |
source="upload", # Choose between "microphone", "upload" | |
type="filepath", | |
optional=False, | |
label="Upload from disk", | |
) | |
upload_button = gr.Button("Submit for recognition") | |
uploaded_output = gr.Textbox(label="Recognized speech from uploaded file") | |
uploaded_html_info = gr.HTML(label="Info") | |
with gr.TabItem("Record from microphone"): | |
microphone = gr.Audio( | |
source="microphone", # Choose between "microphone", "upload" | |
type="filepath", | |
optional=False, | |
label="Record from microphone", | |
) | |
record_button = gr.Button("Submit for recognition") | |
recorded_output = gr.Textbox(label="Recognized speech from recordings") | |
recorded_html_info = gr.HTML(label="Info") | |
upload_button.click( | |
process_uploaded_file, | |
inputs=[ | |
uploaded_file, | |
language_radio, | |
model_dropdown, | |
decoding_method_radio, | |
num_active_paths_slider, | |
], | |
outputs=[uploaded_output, uploaded_html_info], | |
) | |
record_button.click( | |
process_microphone, | |
inputs=[ | |
microphone, | |
language_radio, | |
model_dropdown, | |
decoding_method_radio, | |
num_active_paths_slider, | |
], | |
outputs=[recorded_output, recorded_html_info], | |
) | |
gr.Markdown(description) | |
if __name__ == "__main__": | |
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" | |
logging.basicConfig(format=formatter, level=logging.INFO) | |
demo.launch() | |