Spaces:
Runtime error
Runtime error
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) | |
# | |
# See LICENSE for clarification regarding multiple authors | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from huggingface_hub import hf_hub_download | |
from functools import lru_cache | |
import os | |
os.system("ls -lh /home/user/.local/lib/python3.8/site-packages") | |
os.system("ls -lh /home/user/.local/lib/python3.8/site-packages/k2/lib") | |
os.system( | |
"readelf -d /home/user/.local/lib/python3.8/site-packages/_sherpa.cpython-38-x86_64-linux-gnu.so" | |
) | |
os.system( | |
"readelf -d /home/user/.local/lib/python3.8/site-packages/_k2.cpython-38-x86_64-linux-gnu.so" | |
) | |
os.system( | |
"ldd /home/user/.local/lib/python3.8/site-packages/_sherpa.cpython-38-x86_64-linux-gnu.so" | |
) | |
os.system("ldd /home/user/.local/lib/python3.8/site-packages/kaldifeat/lib/*.so") | |
os.system("ldd /home/user/.local/lib/python3.8/site-packages/k2/lib/*.so") | |
os.system("ldd /home/user/.local/lib/python3.8/site-packages/sherpa/lib/*.so") | |
os.system("readelf -d /home/user/.local/lib/python3.8/site-packages/sherpa/lib/*.so") | |
import k2 | |
import sherpa | |
sample_rate = 16000 | |
def get_pretrained_model( | |
repo_id: str, | |
decoding_method: str, | |
num_active_paths: int, | |
) -> sherpa.OfflineRecognizer: | |
if repo_id in chinese_models: | |
return chinese_models[repo_id]( | |
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths | |
) | |
elif repo_id in english_models: | |
return english_models[repo_id]( | |
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths | |
) | |
elif repo_id in chinese_english_mixed_models: | |
return chinese_english_mixed_models[repo_id]( | |
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths | |
) | |
elif repo_id in tibetan_models: | |
return tibetan_models[repo_id](repo_id) | |
return tibetan_models[repo_id]( | |
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths | |
) | |
else: | |
raise ValueError(f"Unsupported repo_id: {repo_id}") | |
def _get_nn_model_filename( | |
repo_id: str, | |
filename: str, | |
subfolder: str = "exp", | |
) -> str: | |
nn_model_filename = hf_hub_download( | |
repo_id=repo_id, | |
filename=filename, | |
subfolder=subfolder, | |
) | |
return nn_model_filename | |
def _get_bpe_model_filename( | |
repo_id: str, | |
filename: str = "bpe.model", | |
subfolder: str = "data/lang_bpe_500", | |
) -> str: | |
bpe_model_filename = hf_hub_download( | |
repo_id=repo_id, | |
filename=filename, | |
subfolder=subfolder, | |
) | |
return bpe_model_filename | |
def _get_token_filename( | |
repo_id: str, | |
filename: str = "tokens.txt", | |
subfolder: str = "data/lang_char", | |
) -> str: | |
token_filename = hf_hub_download( | |
repo_id=repo_id, | |
filename=filename, | |
subfolder=subfolder, | |
) | |
return token_filename | |
def _get_aishell2_pretrained_model( | |
repo_id: str, | |
decoding_method: str, | |
num_active_paths: int, | |
) -> sherpa.OfflineRecognizer: | |
assert repo_id in [ | |
# context-size 1 | |
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-A-2022-07-12", # noqa | |
# context-size 2 | |
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-B-2022-07-12", # noqa | |
], repo_id | |
nn_model = _get_nn_model_filename( | |
repo_id=repo_id, | |
filename="cpu_jit.pt", | |
) | |
tokens = _get_token_filename(repo_id=repo_id) | |
feat_config = sherpa.FeatureConfig() | |
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate | |
feat_config.fbank_opts.mel_opts.num_bins = 80 | |
feat_config.fbank_opts.frame_opts.dither = 0 | |
config = sherpa.OfflineRecognizerConfig( | |
nn_model=nn_model, | |
tokens=tokens, | |
use_gpu=False, | |
feat_config=feat_config, | |
decoding_method=decoding_method, | |
num_active_paths=num_active_paths, | |
) | |
recognizer = sherpa.OfflineRecognizer(config) | |
return recognizer | |
def _get_gigaspeech_pre_trained_model( | |
repo_id: str, | |
decoding_method: str, | |
num_active_paths: int, | |
) -> sherpa.OfflineRecognizer: | |
assert repo_id in [ | |
"wgb14/icefall-asr-gigaspeech-pruned-transducer-stateless2", | |
], repo_id | |
nn_model = _get_nn_model_filename( | |
repo_id=repo_id, | |
filename="cpu_jit-iter-3488000-avg-20.pt", | |
) | |
tokens = "./giga-tokens.txt" | |
feat_config = sherpa.FeatureConfig() | |
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate | |
feat_config.fbank_opts.mel_opts.num_bins = 80 | |
feat_config.fbank_opts.frame_opts.dither = 0 | |
config = sherpa.OfflineRecognizerConfig( | |
nn_model=nn_model, | |
tokens=tokens, | |
use_gpu=False, | |
feat_config=feat_config, | |
decoding_method=decoding_method, | |
num_active_paths=num_active_paths, | |
) | |
def _get_librispeech_pre_trained_model( | |
repo_id: str, | |
decoding_method: str, | |
num_active_paths: int, | |
) -> sherpa.OfflineRecognizer: | |
assert repo_id in [ | |
"WeijiZhuang/icefall-asr-librispeech-pruned-transducer-stateless8-2022-12-02", # noqa | |
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13", # noqa | |
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11", # noqa | |
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless8-2022-11-14", # noqa | |
], repo_id | |
filename = "cpu_jit.pt" | |
if ( | |
repo_id | |
== "csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11" | |
): | |
filename = "cpu_jit-torch-1.10.0.pt" | |
if ( | |
repo_id | |
== "WeijiZhuang/icefall-asr-librispeech-pruned-transducer-stateless8-2022-12-02" | |
): | |
filename = "cpu_jit-torch-1.10.pt" | |
nn_model = _get_nn_model_filename( | |
repo_id=repo_id, | |
filename=filename, | |
) | |
tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bpe_500") | |
config = sherpa.OfflineRecognizerConfig( | |
nn_model=nn_model, | |
tokens=tokens, | |
use_gpu=False, | |
feat_config=feat_config, | |
decoding_method=decoding_method, | |
num_active_paths=num_active_paths, | |
) | |
recognizer = sherpa.OfflineRecognizer(config) | |
return recognizer | |
def _get_wenetspeech_pre_trained_model( | |
repo_id: str, | |
decoding_method: str, | |
num_active_paths: int, | |
): | |
assert repo_id in [ | |
"luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2", | |
], repo_id | |
nn_model = _get_nn_model_filename( | |
repo_id=repo_id, | |
filename="cpu_jit_epoch_10_avg_2_torch_1.7.1.pt", | |
) | |
tokens = _get_token_filename(repo_id=repo_id) | |
feat_config = sherpa.FeatureConfig() | |
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate | |
feat_config.fbank_opts.mel_opts.num_bins = 80 | |
feat_config.fbank_opts.frame_opts.dither = 0 | |
config = sherpa.OfflineRecognizerConfig( | |
nn_model=nn_model, | |
tokens=tokens, | |
use_gpu=False, | |
feat_config=feat_config, | |
decoding_method=decoding_method, | |
num_active_paths=num_active_paths, | |
) | |
recognizer = sherpa.OfflineRecognizer(config) | |
return recognizer | |
def _get_tal_csasr_pre_trained_model( | |
repo_id: str, | |
decoding_method: str, | |
num_active_paths: int, | |
): | |
assert repo_id in [ | |
"luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5", | |
], repo_id | |
nn_model = _get_nn_model_filename( | |
repo_id=repo_id, | |
filename="cpu_jit.pt", | |
) | |
tokens = _get_token_filename(repo_id=repo_id) | |
feat_config = sherpa.FeatureConfig() | |
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate | |
feat_config.fbank_opts.mel_opts.num_bins = 80 | |
feat_config.fbank_opts.frame_opts.dither = 0 | |
config = sherpa.OfflineRecognizerConfig( | |
nn_model=nn_model, | |
tokens=tokens, | |
use_gpu=False, | |
feat_config=feat_config, | |
decoding_method=decoding_method, | |
num_active_paths=num_active_paths, | |
) | |
recognizer = sherpa.OfflineRecognizer(config) | |
return recognizer | |
def _get_alimeeting_pre_trained_model( | |
repo_id: str, | |
decoding_method: str, | |
num_active_paths: int, | |
): | |
assert repo_id in [ | |
"luomingshuang/icefall_asr_alimeeting_pruned_transducer_stateless2", | |
], repo_id | |
nn_model = _get_nn_model_filename( | |
repo_id=repo_id, | |
filename="cpu_jit_torch_1.7.1.pt", | |
) | |
tokens = _get_token_filename(repo_id=repo_id) | |
feat_config = sherpa.FeatureConfig() | |
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate | |
feat_config.fbank_opts.mel_opts.num_bins = 80 | |
feat_config.fbank_opts.frame_opts.dither = 0 | |
config = sherpa.OfflineRecognizerConfig( | |
nn_model=nn_model, | |
tokens=tokens, | |
use_gpu=False, | |
feat_config=feat_config, | |
decoding_method=decoding_method, | |
num_active_paths=num_active_paths, | |
) | |
recognizer = sherpa.OfflineRecognizer(config) | |
return recognizer | |
def _get_aidatatang_200zh_pretrained_mode( | |
repo_id: str, | |
decoding_method: str, | |
num_active_paths: int, | |
): | |
assert repo_id in [ | |
"luomingshuang/icefall_asr_aidatatang-200zh_pruned_transducer_stateless2", | |
], repo_id | |
nn_model = _get_nn_model_filename( | |
repo_id=repo_id, | |
filename="cpu_jit_torch.1.7.1.pt", | |
) | |
tokens = _get_token_filename(repo_id=repo_id) | |
feat_config = sherpa.FeatureConfig() | |
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate | |
feat_config.fbank_opts.mel_opts.num_bins = 80 | |
feat_config.fbank_opts.frame_opts.dither = 0 | |
config = sherpa.OfflineRecognizerConfig( | |
nn_model=nn_model, | |
tokens=tokens, | |
use_gpu=False, | |
feat_config=feat_config, | |
decoding_method=decoding_method, | |
num_active_paths=num_active_paths, | |
) | |
recognizer = sherpa.OfflineRecognizer(config) | |
return recognizer | |
def _get_tibetan_pre_trained_model( | |
repo_id: str, | |
decoding_method: str, | |
num_active_paths: int, | |
): | |
assert repo_id in [ | |
"syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless7-2022-12-02", | |
"syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29", | |
], repo_id | |
filename = "cpu_jit.pt" | |
if ( | |
repo_id | |
== "syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29" | |
): | |
filename = ("cpu_jit-epoch-28-avg-23-torch-1.10.0.pt",) | |
nn_model = _get_nn_model_filename( | |
repo_id=repo_id, | |
filename=filename, | |
) | |
tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bpe_500") | |
feat_config = sherpa.FeatureConfig() | |
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate | |
feat_config.fbank_opts.mel_opts.num_bins = 80 | |
feat_config.fbank_opts.frame_opts.dither = 0 | |
config = sherpa.OfflineRecognizerConfig( | |
nn_model=nn_model, | |
tokens=tokens, | |
use_gpu=False, | |
feat_config=feat_config, | |
decoding_method=decoding_method, | |
num_active_paths=num_active_paths, | |
) | |
recognizer = sherpa.OfflineRecognizer(config) | |
return recognizer | |
chinese_models = { | |
"luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2": _get_wenetspeech_pre_trained_model, # noqa | |
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-A-2022-07-12": _get_aishell2_pretrained_model, # noqa | |
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-B-2022-07-12": _get_aishell2_pretrained_model, # noqa | |
"luomingshuang/icefall_asr_aidatatang-200zh_pruned_transducer_stateless2": _get_aidatatang_200zh_pretrained_mode, # noqa | |
"luomingshuang/icefall_asr_alimeeting_pruned_transducer_stateless2": _get_alimeeting_pre_trained_model, # noqa | |
} | |
english_models = { | |
"wgb14/icefall-asr-gigaspeech-pruned-transducer-stateless2": _get_gigaspeech_pre_trained_model, # noqa | |
"WeijiZhuang/icefall-asr-librispeech-pruned-transducer-stateless8-2022-12-02": _get_librispeech_pre_trained_model, # noqa | |
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless8-2022-11-14": _get_librispeech_pre_trained_model, # noqa | |
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11": _get_librispeech_pre_trained_model, # noqa | |
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13": _get_librispeech_pre_trained_model, # noqa | |
} | |
chinese_english_mixed_models = { | |
"luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5": _get_tal_csasr_pre_trained_model, # noqa | |
} | |
tibetan_models = { | |
"syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless7-2022-12-02": _get_tibetan_pre_trained_model, # noqa | |
"syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29": _get_tibetan_pre_trained_model, # noqa | |
} | |
all_models = { | |
**chinese_models, | |
**english_models, | |
**chinese_english_mixed_models, | |
**tibetan_models, | |
} | |
language_to_models = { | |
"Chinese": list(chinese_models.keys()), | |
"English": list(english_models.keys()), | |
"Chinese+English": list(chinese_english_mixed_models.keys()), | |
"Tibetan": list(tibetan_models.keys()), | |
} | |