Spaces:
Runtime error
Runtime error
add model
Browse files- app.py +38 -20
- saved_model/{config.json β 0/config.json} +0 -0
- saved_model/{model.pth β 0/model.pth} +0 -0
- saved_model/1/config.json +3 -0
- saved_model/1/model.pth +3 -0
- text/cleaners.py +47 -40
app.py
CHANGED
@@ -14,7 +14,7 @@ from text import text_to_sequence
|
|
14 |
from mel_processing import spectrogram_torch
|
15 |
|
16 |
|
17 |
-
def get_text(text):
|
18 |
text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
|
19 |
if hps.data.add_blank:
|
20 |
text_norm = commons.intersperse(text_norm, 0)
|
@@ -22,10 +22,12 @@ def get_text(text):
|
|
22 |
return text_norm
|
23 |
|
24 |
|
25 |
-
def tts_fn(text,
|
26 |
if len(text) > 150:
|
27 |
return "Error: Text is too long", None
|
28 |
-
|
|
|
|
|
29 |
with no_grad():
|
30 |
x_tst = stn_tst.unsqueeze(0)
|
31 |
x_tst_lengths = LongTensor([stn_tst.size(0)])
|
@@ -35,13 +37,20 @@ def tts_fn(text, speaker_id):
|
|
35 |
return "Success", (hps.data.sampling_rate, audio)
|
36 |
|
37 |
|
38 |
-
def vc_fn(
|
39 |
if input_audio is None:
|
40 |
return "You need to upload an audio", None
|
41 |
sampling_rate, audio = input_audio
|
42 |
duration = audio.shape[0] / sampling_rate
|
43 |
if duration > 30:
|
44 |
return "Error: Audio is too long", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
46 |
if len(audio.shape) > 1:
|
47 |
audio = librosa.to_mono(audio.transpose(1, 0))
|
@@ -62,17 +71,26 @@ def vc_fn(original_speaker_id, target_speaker_id, input_audio):
|
|
62 |
|
63 |
|
64 |
if __name__ == '__main__':
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
app = gr.Blocks()
|
78 |
|
@@ -85,16 +103,16 @@ if __name__ == '__main__':
|
|
85 |
with gr.TabItem("TTS"):
|
86 |
with gr.Column():
|
87 |
tts_input1 = gr.TextArea(label="Text (150 words limitation)", value="γγγ«γ‘γ―γ")
|
88 |
-
tts_input2 = gr.Dropdown(label="Speaker", choices=
|
89 |
tts_submit = gr.Button("Generate", variant="primary")
|
90 |
tts_output1 = gr.Textbox(label="Output Message")
|
91 |
tts_output2 = gr.Audio(label="Output Audio")
|
92 |
with gr.TabItem("Voice Conversion"):
|
93 |
with gr.Column():
|
94 |
-
vc_input1 = gr.Dropdown(label="Original Speaker", choices=
|
95 |
-
value=
|
96 |
-
vc_input2 = gr.Dropdown(label="Target Speaker", choices=
|
97 |
-
value=
|
98 |
vc_input3 = gr.Audio(label="Input Audio (30s limitation)")
|
99 |
vc_submit = gr.Button("Convert", variant="primary")
|
100 |
vc_output1 = gr.Textbox(label="Output Message")
|
|
|
14 |
from mel_processing import spectrogram_torch
|
15 |
|
16 |
|
17 |
+
def get_text(text, hps):
|
18 |
text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
|
19 |
if hps.data.add_blank:
|
20 |
text_norm = commons.intersperse(text_norm, 0)
|
|
|
22 |
return text_norm
|
23 |
|
24 |
|
25 |
+
def tts_fn(text, speaker):
|
26 |
if len(text) > 150:
|
27 |
return "Error: Text is too long", None
|
28 |
+
model, hps = models[model_idx[speaker]]
|
29 |
+
speaker_id = speaker_idx[speaker]
|
30 |
+
stn_tst = get_text(text, hps)
|
31 |
with no_grad():
|
32 |
x_tst = stn_tst.unsqueeze(0)
|
33 |
x_tst_lengths = LongTensor([stn_tst.size(0)])
|
|
|
37 |
return "Success", (hps.data.sampling_rate, audio)
|
38 |
|
39 |
|
40 |
+
def vc_fn(original_speaker, target_speaker, input_audio):
|
41 |
if input_audio is None:
|
42 |
return "You need to upload an audio", None
|
43 |
sampling_rate, audio = input_audio
|
44 |
duration = audio.shape[0] / sampling_rate
|
45 |
if duration > 30:
|
46 |
return "Error: Audio is too long", None
|
47 |
+
if model_idx[original_speaker] != model_idx[target_speaker]:
|
48 |
+
return "Error: Can not convert voice between different model", None
|
49 |
+
|
50 |
+
model, hps = models[model_idx[original_speaker]]
|
51 |
+
original_speaker_id = speaker_idx[original_speaker]
|
52 |
+
target_speaker_id = speaker_idx[target_speaker]
|
53 |
+
|
54 |
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
55 |
if len(audio.shape) > 1:
|
56 |
audio = librosa.to_mono(audio.transpose(1, 0))
|
|
|
71 |
|
72 |
|
73 |
if __name__ == '__main__':
|
74 |
+
models = []
|
75 |
+
model_idx = []
|
76 |
+
speaker_idx = []
|
77 |
+
speakers = []
|
78 |
+
for i in range(0, 2):
|
79 |
+
config_path = f"saved_model/{i}/config.json"
|
80 |
+
model_path = f"saved_model/{i}/model.pth"
|
81 |
+
hps = utils.get_hparams_from_file(config_path)
|
82 |
+
model = SynthesizerTrn(
|
83 |
+
len(hps.symbols),
|
84 |
+
hps.data.filter_length // 2 + 1,
|
85 |
+
hps.train.segment_size // hps.data.hop_length,
|
86 |
+
n_speakers=hps.data.n_speakers,
|
87 |
+
**hps.model)
|
88 |
+
utils.load_checkpoint(model_path, model, None)
|
89 |
+
model.eval()
|
90 |
+
models.append((model, hps))
|
91 |
+
speakers = speakers + [f"model{i}/{x}" for x in hps.speakers]
|
92 |
+
model_idx = model_idx + [i] * len(hps.speakers)
|
93 |
+
speaker_idx = speaker_idx + list(range(0, len(hps.speakers)))
|
94 |
|
95 |
app = gr.Blocks()
|
96 |
|
|
|
103 |
with gr.TabItem("TTS"):
|
104 |
with gr.Column():
|
105 |
tts_input1 = gr.TextArea(label="Text (150 words limitation)", value="γγγ«γ‘γ―γ")
|
106 |
+
tts_input2 = gr.Dropdown(label="Speaker", choices=speakers, type="index", value=speakers[0])
|
107 |
tts_submit = gr.Button("Generate", variant="primary")
|
108 |
tts_output1 = gr.Textbox(label="Output Message")
|
109 |
tts_output2 = gr.Audio(label="Output Audio")
|
110 |
with gr.TabItem("Voice Conversion"):
|
111 |
with gr.Column():
|
112 |
+
vc_input1 = gr.Dropdown(label="Original Speaker", choices=speakers, type="index",
|
113 |
+
value=speakers[0])
|
114 |
+
vc_input2 = gr.Dropdown(label="Target Speaker", choices=speakers, type="index",
|
115 |
+
value=speakers[1])
|
116 |
vc_input3 = gr.Audio(label="Input Audio (30s limitation)")
|
117 |
vc_submit = gr.Button("Convert", variant="primary")
|
118 |
vc_output1 = gr.Textbox(label="Output Message")
|
saved_model/{config.json β 0/config.json}
RENAMED
File without changes
|
saved_model/{model.pth β 0/model.pth}
RENAMED
File without changes
|
saved_model/1/config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8022ffb2ae81ff2c84edde380bbdfc60b9ad933f767c5187d4fcfd5c964315b1
|
3 |
+
size 1302
|
saved_model/1/model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f07377ad8af65adaad59315b40efe67c020f51dc526da66f4e11f812687392e
|
3 |
+
size 158884173
|
text/cleaners.py
CHANGED
@@ -1,51 +1,58 @@
|
|
1 |
import re
|
2 |
from unidecode import unidecode
|
3 |
import pyopenjtalk
|
|
|
4 |
pyopenjtalk._lazy_init()
|
5 |
|
6 |
# Regular expression matching Japanese without punctuation marks:
|
7 |
-
_japanese_characters = re.compile(
|
|
|
8 |
|
9 |
# Regular expression matching non-Japanese characters or punctuation marks:
|
10 |
-
_japanese_marks = re.compile(
|
|
|
11 |
|
12 |
|
13 |
def japanese_cleaners(text):
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import re
|
2 |
from unidecode import unidecode
|
3 |
import pyopenjtalk
|
4 |
+
|
5 |
pyopenjtalk._lazy_init()
|
6 |
|
7 |
# Regular expression matching Japanese without punctuation marks:
|
8 |
+
_japanese_characters = re.compile(
|
9 |
+
r'[A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
|
10 |
|
11 |
# Regular expression matching non-Japanese characters or punctuation marks:
|
12 |
+
_japanese_marks = re.compile(
|
13 |
+
r'[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
|
14 |
|
15 |
|
16 |
def japanese_cleaners(text):
|
17 |
+
'''Pipeline for notating accent in Japanese text.'''
|
18 |
+
'''Reference https://r9y9.github.io/ttslearn/latest/notebooks/ch10_Recipe-Tacotron.html'''
|
19 |
+
sentences = re.split(_japanese_marks, text)
|
20 |
+
marks = re.findall(_japanese_marks, text)
|
21 |
+
text = ''
|
22 |
+
for i, sentence in enumerate(sentences):
|
23 |
+
if re.match(_japanese_characters, sentence):
|
24 |
+
if text != '':
|
25 |
+
text += ' '
|
26 |
+
labels = pyopenjtalk.extract_fullcontext(sentence)
|
27 |
+
for n, label in enumerate(labels):
|
28 |
+
phoneme = re.search(r'\-([^\+]*)\+', label).group(1)
|
29 |
+
if phoneme not in ['sil', 'pau']:
|
30 |
+
text += phoneme.replace('ch', 'Κ§').replace('sh', 'Κ').replace('cl', 'Q')
|
31 |
+
else:
|
32 |
+
continue
|
33 |
+
n_moras = int(re.search(r'/F:(\d+)_', label).group(1))
|
34 |
+
a1 = int(re.search(r"/A:(\-?[0-9]+)\+", label).group(1))
|
35 |
+
a2 = int(re.search(r"\+(\d+)\+", label).group(1))
|
36 |
+
a3 = int(re.search(r"\+(\d+)/", label).group(1))
|
37 |
+
if re.search(r'\-([^\+]*)\+', labels[n + 1]).group(1) in ['sil', 'pau']:
|
38 |
+
a2_next = -1
|
39 |
+
else:
|
40 |
+
a2_next = int(re.search(r"\+(\d+)\+", labels[n + 1]).group(1))
|
41 |
+
# Accent phrase boundary
|
42 |
+
if a3 == 1 and a2_next == 1:
|
43 |
+
text += ' '
|
44 |
+
# Falling
|
45 |
+
elif a1 == 0 and a2_next == a2 + 1 and a2 != n_moras:
|
46 |
+
text += 'β'
|
47 |
+
# Rising
|
48 |
+
elif a2 == 1 and a2_next == 2:
|
49 |
+
text += 'β'
|
50 |
+
if i < len(marks):
|
51 |
+
text += unidecode(marks[i]).replace(' ', '')
|
52 |
+
if re.match('[A-Za-z]', text[-1]):
|
53 |
+
text += '.'
|
54 |
+
return text
|
55 |
+
|
56 |
+
|
57 |
+
def japanese_cleaners2(text):
|
58 |
+
return japanese_cleaners(text).replace('ts', 'Κ¦')
|