OneLLM / data /fintune_dataset.py
csuhan's picture
Upload folder using huggingface_hub
8b54513
raw
history blame
17.3 kB
import warnings
import torch
import yaml
from torch.utils.data import Dataset
from PIL import Image
import json
from model.tokenizer import Tokenizer
import os
import torchvision.transforms as transforms
import random
import torchvision.transforms.functional as F
import torchaudio
from . import conversation_lib
import numpy as np
from . import video_utils
from .imu_utils import get_imu_frames
IGNORE_INDEX = -100
DEFAULT_IMAGE_TOKEN = "<image>"
try:
from torchvision.transforms import InterpolationMode
BICUBIC = InterpolationMode.BICUBIC
except ImportError:
BICUBIC = Image.BICUBIC
T_random_resized_crop = transforms.Compose([
transforms.RandomResizedCrop(size=(224, 224), scale=(0.9, 1.0), ratio=(0.75, 1.3333), interpolation=BICUBIC,
antialias=None), # 3 is bicubic
transforms.ToTensor(),
transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])])
# image transform
transform_img_train = transforms.Compose([
transforms.RandomResizedCrop(size=(224, 224), scale=(0.9, 1.0), ratio=(
0.75, 1.3333), interpolation=3, antialias=None), # 3 is bicubic
transforms.ToTensor(),
transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])])
class PairRandomResizedCrop(transforms.RandomResizedCrop):
def forward(self, imgs):
i, j, h, w = self.get_params(imgs[0], self.scale, self.ratio)
return [F.resized_crop(img, i, j, h, w, self.size, self.interpolation, antialias=self.antialias) for img in imgs]
class PairToTensor(transforms.ToTensor):
def __call__(self, pics):
return [F.to_tensor(pic) for pic in pics]
class PairNormalize(transforms.Normalize):
def forward(self, tensors):
return [F.normalize(tensor, self.mean, self.std, self.inplace) for tensor in tensors]
transform_pairimg_train = transforms.Compose([
PairRandomResizedCrop(size=(224, 224), scale=(0.9, 1.0), ratio=(
0.75, 1.3333), interpolation=3, antialias=None), # 3 is bicubic
PairToTensor(),
PairNormalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])])
def pc_norm(pc):
""" pc: NxC, return NxC """
xyz = pc[:, :3]
other_feature = pc[:, 3:]
centroid = torch.mean(xyz, dim=0)
xyz = xyz - centroid
m = torch.max(torch.sqrt(torch.sum(xyz ** 2, dim=1)))
xyz = xyz / m
pc = torch.cat((xyz, other_feature), dim=1)
return pc
def make_audio_features(wav_name, mel_bins=128, target_length=1024, aug=False):
waveform, sr = torchaudio.load(wav_name)
# assert sr == 16000, 'input audio sampling rate must be 16kHz'
if sr != 16000:
trans = torchaudio.transforms.Resample(sr, 16000)
waveform = trans(waveform)
waveform = waveform - waveform.mean()
fbank = torchaudio.compliance.kaldi.fbank(
waveform, htk_compat=True, sample_frequency=16000, use_energy=False,
window_type='hanning', num_mel_bins=mel_bins, dither=0.0, frame_shift=10)
n_frames = fbank.shape[0]
p = target_length - n_frames
if p > 0:
m = torch.nn.ZeroPad2d((0, 0, 0, p))
fbank = m(fbank)
elif p < 0:
fbank = fbank[0:target_length, :]
if aug:
freqm = torchaudio.transforms.FrequencyMasking(48)
timem = torchaudio.transforms.TimeMasking(192)
fbank = torch.transpose(fbank, 0, 1)
fbank = fbank.unsqueeze(0)
fbank = freqm(fbank)
fbank = timem(fbank)
fbank = fbank.squeeze(0)
fbank = torch.transpose(fbank, 0, 1)
fbank = (fbank - (-4.2677393)) / (4.5689974 * 2)
return fbank
class ConversationGenerator:
def __init__(self, tokenizer):
self.tokenizer = tokenizer
self.header = f"{conversation_lib.default_conversation.system}\n\n"
self._probe_tokenizer_style()
def _probe_tokenizer_style(self):
"""
Given a sentence, e.g. "My darling", some tokenizers will make the space a seperate token,
while some others will merge the space into the next word, forming a token representing " darling".
Knowing which style the tokenizer takes is necessary for correct ground-truth label masking.
"""
probe = "Probe am I"
sentence1 = self.tokenizer.encode(conversation_lib.default_conversation.roles[1] + ": " + probe,
bos=False, eos=False)
sentence2 = self.tokenizer.encode(probe,
bos=False, eos=False)
if sentence1[-len(sentence2):] == sentence2:
self.space_before_to_predict = False
else:
sentence3 = self.tokenizer.encode(" " + probe,
bos=False, eos=False)
assert sentence1[-len(sentence3):] == sentence3
self.space_before_to_predict = True
def add_speaker_and_signal(self, source, get_conversation=True):
"""Add speaker and start/end signal on each round."""
BEGIN_SIGNAL = "### "
END_SIGNAL = "\n"
conversation = self.header
to_predict_list = []
for sentence in source:
from_str = sentence["from"]
if from_str.lower() in ["human"]:
from_str = conversation_lib.default_conversation.roles[0]
elif from_str.lower() in ["gpt", "assistant"]:
from_str = conversation_lib.default_conversation.roles[1]
else:
raise ValueError(f"unknown dialog role: {from_str.lower()}")
value = sentence["value"]
if DEFAULT_IMAGE_TOKEN in value:
value = value.replace(DEFAULT_IMAGE_TOKEN, '').strip()
sentence_value = BEGIN_SIGNAL + from_str + ": " + value + END_SIGNAL
if from_str == conversation_lib.default_conversation.roles[1]:
to_predict_value = value + END_SIGNAL + "###"
if self.space_before_to_predict:
to_predict_value = " " + to_predict_value
to_predict_list.append(to_predict_value)
if get_conversation:
conversation = conversation + sentence_value
conversation = conversation + BEGIN_SIGNAL
return conversation, to_predict_list
DATASETS = dict(
image=[
dict(path="datasets/InstructionTuning/image/llava_v1_5_mix665k_image.json", type='image'),
dict(path='datasets/InstructionTuning/image/cococap_train.json', type='image'),
dict(path="datasets/InstructionTuning/image/llava_v1_5_mix665k_text.json", type='text'),
],
audio=[
dict(path="datasets/InstructionTuning/audio/audiocap_train.json", type='audio'),
dict(path="datasets/InstructionTuning/audio/audiocap_val.json", type='audio'),
dict(path="datasets/InstructionTuning/audio/audio_conversation.json", type='audio'),
],
video=[
dict(path="datasets/InstructionTuning/video/msrvtt_cap_trainval.json", type='video'),
dict(path="datasets/InstructionTuning/video/msrvtt_cap_test.json", type='video'),
dict(path="datasets/InstructionTuning/video/msrvtt_vqa_train.json", type='video'),
dict(path="datasets/InstructionTuning/video/msrvtt_vqa_val.json", type='video'),
dict(path="datasets/InstructionTuning/video/msrvtt_vqa_test.json", type='video'),
dict(path="datasets/InstructionTuning/video/video_complex_reasoning_10k.json", type='video'),
dict(path="datasets/InstructionTuning/video/video_conversation_10k.json", type='video'),
dict(path="datasets/InstructionTuning/video/video_detail_10k.json", type='video'),
],
point=[
dict(path="datasets/InstructionTuning/point/pointllm_70k_formated.json", type='point'),
],
rgbd=[
dict(path="datasets/InstructionTuning/depth_normal/llava_instruct_50k_depth.json", type='rgbd'),
],
rgbn=[
dict(path="datasets/InstructionTuning/depth_normal/llava_instruct_50k_normal.json", type='rgbn'),
],
imu=[
dict(path="datasets/InstructionTuning/imu/imu_fixed_50k.json", type='imu'),
],
fmri=[
dict(path="datasets/InstructionTuning/fmri/fmri_fixed.json", type='fmri'),
],
)
IMU_PATH = "/mnt/petrelfs/share_data/hanjiaming/ego4d/v2/processed_imu/"
class FinetuneDialogDataset(Dataset):
def __init__(self, dataset=['image'], transform=T_random_resized_crop, max_words=2048, image_words=30, tokenizer_path=None):
if isinstance(dataset, str):
dataset = [dataset]
self.dataset = dataset
group_ann = {}
for d in dataset:
for meta in DATASETS[d]:
meta_path, meta_type = meta['path'], meta['type']
meta_ext = os.path.splitext(meta_path)[-1]
if meta_ext == ".json":
with open(meta_path) as f:
meta_l = json.load(f)
# add data_type
# this is a temp solution
new_meta_l = []
for l in meta_l:
l['data_type'] = meta_type
new_meta_l.append(l)
meta_l = new_meta_l
elif meta_ext == ".jsonl":
meta_l = []
with open(meta_path) as f:
for i, line in enumerate(f):
try:
meta_l.append(json.loads(line))
except json.decoder.JSONDecodeError as e:
print(
f"Error decoding the following jsonl line ({i}):\n{line.rstrip()}", force=True)
raise e
else:
raise NotImplementedError(
f"Unknown meta file extension: \"{meta_ext}\". "
f"Currently, .json, .jsonl are supported. "
"If you are using a supported format, please set the file extension so that the proper parsing "
"routine can be called."
)
if meta_type not in group_ann:
group_ann[meta_type] = []
print(f"{meta_path}, type {meta_type}: len {len(meta_l)}")
group_ann[meta_type] += meta_l
# sort group_ann for higher efficiency (items in one global batch with similar length)
for meta_type, meta_l in group_ann.items():
meta_l.sort(key=lambda data_item: sum(
[len(_['value']) for _ in data_item['conversations']]))
self.group_ann = group_ann
self.ann = sum(list(self.group_ann.values()), start=[])
self.group_indices = {}
start_pos = 0
for meta_type, meta_l in self.group_ann.items():
self.group_indices[meta_type] = list(
range(start_pos, start_pos + len(meta_l)))
start_pos = start_pos + len(meta_l)
print(f"total length: {len(self)}")
self.transform = transform
print(f"transform:\n{self.transform}")
self.max_words = max_words
self.image_words = image_words
self.tokenizer = Tokenizer(model_path=tokenizer_path)
self.conversation_generator = ConversationGenerator(self.tokenizer)
self.load_funcs = dict(
image=self.load_image,
audio=self.load_audio,
video=self.load_video,
point=self.load_point,
rgbd=self.load_rgbx,
rgbn=self.load_rgbx,
imu=self.load_imu,
fmri=self.load_fmri
)
def __len__(self):
return len(self.ann)
def load_image(self, data):
filename = data['image']
image = Image.open(filename).convert('RGB')
image = self.transform(image)
return image
def load_audio(self, data):
audio_path = data['image']
fbank = make_audio_features(audio_path, mel_bins=128)
fbank = fbank.transpose(0, 1)[None] # [1, 128, 1024]
return fbank
def load_video(self, data):
video_path = data['image']
video_feats = video_utils.load_and_transform_video_data(
video_path, video_path, clip_duration=1, clips_per_video=5)
return video_feats[:, :, 0]
def load_point(self, data):
point_path = data['image']
point_feat = torch.load(point_path, map_location='cpu')
point_feat = point_feat.transpose(0, 1)
return point_feat
def load_rgbx(self, data):
image_path = data['image']
x_image_path = data['depth_image'] if 'depth_image' in data else data['normal_image']
image = Image.open(image_path).convert('RGB')
x_image = Image.open(x_image_path).convert('RGB')
x_image = x_image.resize(image.size[-2:])
image, x_image = transform_pairimg_train([image, x_image])
# [2, 3, H, W]
image = torch.stack([image, x_image], dim=0)
return image
def load_fmri(self, data):
fmri_path = data['image']
data = np.load(fmri_path)
data = data.mean(axis=0)
data = torch.tensor(data[None])
return data
def load_imu(self, data_dict):
uid = data_dict["video_uid"]
w_s = data_dict["window_start"]
w_e = data_dict["window_end"]
imu_data = get_imu_frames(
IMU_PATH, uid,
video_start_sec=w_s,
video_end_sec=w_e,
)
if imu_data is None:
raise ValueError
return imu_data['signal']
def __getitem__(self, index, expect_type=None):
if expect_type is None:
data_item = self.ann[index]
else:
# in case we want get data from specific data_type
data_item = self.group_ann[expect_type][index]
data_type = data_item['data_type']
if data_type != 'text':
if data_type in self.load_funcs:
try:
image = self.load_funcs[data_type](data_item)
if image == None:
raise ValueError('Data is None')
except:
print('Error', data_item)
rand_idx = random.randint(
0, len(self.group_ann[data_type]))
return self.__getitem__(rand_idx, expect_type=data_type)
else:
raise ValueError(f'Does not support {data_type}')
else:
image = None
# warnings.warn("pure black image for examples without image")
# image = torch.zeros(3, 224, 224)
source = data_item["conversations"]
conversation, to_predict_values = self.conversation_generator.add_speaker_and_signal(
source)
if len(to_predict_values) == 0:
warnings.warn(
f"see dialog data with nothing to predict, data: {data_item}")
return self[index-1]
tokenzed_conversation = self.tokenizer.encode(
conversation, bos=True, eos=True)
labels = [IGNORE_INDEX for _ in tokenzed_conversation]
check_pos = 0
for value in to_predict_values:
tokenized_value = self.tokenizer.encode(
value, bos=False, eos=False)
value_pos = find_sublist(
tokenzed_conversation[check_pos:], tokenized_value) + check_pos
if value_pos == -1:
print(
"a sentence mismatches the corresponding piece in the conversation")
return self[index-1]
labels[value_pos:value_pos+len(tokenized_value)] = tokenized_value
assert labels[value_pos:value_pos+len(
tokenized_value)] == tokenzed_conversation[value_pos:value_pos+len(tokenized_value)]
check_pos = value_pos+len(tokenized_value)
input2 = torch.tensor(tokenzed_conversation, dtype=torch.int64)
labels = torch.tensor(labels, dtype=torch.int64)
if image is not None:
max_words = self.max_words - self.image_words
else:
max_words = self.max_words
padding = max_words - input2.shape[0]
if padding > 0:
input2 = torch.cat(
(input2, torch.zeros(padding, dtype=torch.int64) - 1))
labels = torch.cat(
(labels, torch.zeros(padding, dtype=torch.int64) - 1))
elif padding < 0:
input2 = input2[:max_words]
labels = labels[:max_words]
input2_mask = input2.ge(0)
label_mask = labels.ge(0)
input2[~input2_mask] = 0
labels[~label_mask] = 0
input2_mask = input2_mask.float()
label_mask = label_mask.float()
if image is None:
return input2, labels, data_item['data_type']
else:
return input2, labels, image, data_item['data_type']
def groups(self):
return list(self.group_indices.values())
def find_sublist(a: list, b: list):
len_a, len_b = len(a), len(b)
for i in range(len_a - len_b + 1):
if a[i:i+len_b] == b:
return i
return -1