OneLLM / app.py
csuhan's picture
Upload folder using huggingface_hub
effc1b6
raw
history blame
18.2 kB
import sys
import os
import argparse
import multiprocessing as mp
import numpy as np
from typing import List, Optional
import torch
import torch.distributed as dist
from fairscale.nn.model_parallel import initialize as fs_init
import gradio as gr
from util.misc import setup_for_distributed
from util.misc import default_tensor_type
from model.meta import MetaModel
from data.conversation_lib import conv_templates, SeparatorStyle
from PIL import Image
import torchvision.transforms as transforms
from data.fintune_dataset import make_audio_features
from data import video_utils
from dataclasses import dataclass
from huggingface_hub import hf_hub_download
import plotly.graph_objects as go
from data.fintune_dataset import pc_norm
from functools import partial
import glob
import torchvision.transforms.functional as F
T_random_resized_crop = transforms.Compose([
transforms.RandomResizedCrop(size=(224, 224), scale=(0.9, 1.0), ratio=(0.75, 1.3333), interpolation=3,
antialias=None), # 3 is bicubic
transforms.ToTensor(),
transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])])
class PairRandomResizedCrop(transforms.RandomResizedCrop):
def forward(self, imgs):
i, j, h, w = self.get_params(imgs[0], self.scale, self.ratio)
return [F.resized_crop(img, i, j, h, w, self.size, self.interpolation, antialias=self.antialias) for img in imgs]
class PairToTensor(transforms.ToTensor):
def __call__(self, pics):
return [F.to_tensor(pic) for pic in pics]
class PairNormalize(transforms.Normalize):
def forward(self, tensors):
return [F.normalize(tensor, self.mean, self.std, self.inplace) for tensor in tensors]
transform_pairimg_train = transforms.Compose([
PairRandomResizedCrop(size=(224, 224), scale=(0.99, 1.0), ratio=(0.75, 1.3333), interpolation=3, antialias=None), # 3 is bicubic
PairToTensor(),
PairNormalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])])
def load_audio(audio_path):
fbank = make_audio_features(audio_path, mel_bins=128)
fbank = fbank.transpose(0, 1)[None] #[1, 128, 1024]
return fbank
def load_video(video_path):
video_feats = video_utils.load_and_transform_video_data(video_path, video_path, clip_duration=1, clips_per_video=5)
return video_feats[:, :, 0]
def load_point(point_path):
point_feat = np.load(point_path)
point_feat = torch.tensor(point_feat)
point_feat = pc_norm(point_feat)
return point_feat
def load_fmri(fmri_path):
data = np.load(fmri_path)
data = data.mean(axis=0)
data = torch.tensor(data[None])
return data
def load_rgbx(image_path, x_image_path):
image = Image.open(image_path).convert('RGB')
x_image = Image.open(x_image_path).convert('RGB')
x_image = x_image.resize(image.size[-2:])
image, x_image = transform_pairimg_train([image, x_image])
# [2, 3, H, W]
image = torch.stack([image, x_image], dim=0)
return image
def model_worker(
rank: int, args: argparse.Namespace, barrier: mp.Barrier,
request_queue: mp.Queue, response_queue: Optional[mp.Queue] = None,
) -> None:
"""
The worker function that manipulates the GPU to run the inference.
Exact n_gpu workers are started, with each one operating on a separate GPU.
Args:
rank (int): Distributed rank of the worker.
args (argparse.Namespace): All command line arguments.
barrier (multiprocessing.Barrier): A barrier used to delay the start
of Web UI to be after the start of the model.
"""
world_size = len(args.gpu_ids)
gpu_id = args.gpu_ids[rank]
dist.init_process_group(
backend="nccl", rank=rank, world_size=world_size,
init_method=f"tcp://{args.master_addr}:{args.master_port}",
)
print(f"| distributed init on worker {rank}/{world_size}. "
f"using gpu: {gpu_id}")
fs_init.initialize_model_parallel(world_size)
torch.cuda.set_device(gpu_id)
torch.manual_seed(1)
np.random.seed(1)
# set the print behavior.
setup_for_distributed(rank == 0)
target_dtype = {
"bf16": torch.bfloat16,
"fp16": torch.float16
}[args.dtype]
with default_tensor_type(dtype=target_dtype, device="cuda"):
model = MetaModel(args.llama_type, args.llama_config, tokenizer_path=args.tokenizer_path)
for ckpt_id in range(args.num_ckpts):
ckpt_path = hf_hub_download(repo_id=args.pretrained_path, filename=args.ckpt_format.format(str(ckpt_id)))
# ckpt_path = os.path.join(args.pretrained_path, args.ckpt_format.format(str(ckpt_id)))
print(f"Loading pretrained weights {ckpt_path}")
checkpoint = torch.load(ckpt_path, map_location='cpu')
msg = model.load_state_dict(checkpoint, strict=False)
# print("load result:\n", msg)
model.cuda()
model.eval()
print(f"Model = {str(model)}")
barrier.wait()
while True:
img_path, audio_path, video_path, point_path, fmri_path, depth_path, depth_rgb_path, normal_path, normal_rgb_path, chatbot, max_gen_len, temperature, top_p, modality = request_queue.get()
if 'image' in modality and img_path is not None:
image = Image.open(img_path).convert('RGB')
inputs = T_random_resized_crop(image)
elif 'video' in modality and video_path is not None:
inputs = load_video(video_path)
elif 'audio' in modality and audio_path is not None:
inputs = load_audio(audio_path)
elif 'point' in modality and point_path is not None:
inputs = load_point(point_path)
elif 'fmri' in modality and fmri_path is not None:
inputs = load_fmri(fmri_path)
elif 'rgbd' in modality and depth_path is not None and depth_rgb_path is not None:
inputs = load_rgbx(depth_rgb_path, depth_path)
elif 'rgbn' in modality and normal_path is not None and normal_rgb_path is not None:
inputs = load_rgbx(normal_rgb_path, normal_path)
else:
inputs = None
if inputs is not None:
inputs = inputs[None].cuda().to(target_dtype)
conv = conv_templates["v1"].copy()
for user, bot in chatbot:
conv.append_message(conv.roles[0], user)
conv.append_message(conv.roles[1], bot)
with torch.cuda.amp.autocast(dtype=target_dtype):
print(conv.get_prompt())
for stream_response in model.stream_generate(
conv.get_prompt(), inputs,
max_gen_len=max_gen_len, temperature=temperature, top_p=top_p,
modal = modality
):
conv_sep = (
conv.sep
if conv.sep_style == SeparatorStyle.SINGLE
else conv.sep2
)
end_pos = stream_response["text"].find(conv_sep)
if end_pos != -1:
stream_response["text"] = (
stream_response['text'][:end_pos].rstrip() + "\n"
)
stream_response["end_of_content"] = True
# keep a few characters if not end_of_content to avoid sending
# part of conv_sep before all of it is generated.
if not stream_response["end_of_content"]:
if len(stream_response["text"]) < len(conv_sep):
continue
stream_response["text"] = (
stream_response["text"][:-len(conv_sep)]
)
if response_queue is not None:
response_queue.put(stream_response)
if stream_response["end_of_content"]:
break
def gradio_worker(
request_queues: List[mp.Queue], response_queue: mp.Queue,
args: argparse.Namespace, barrier: mp.Barrier,
) -> None:
"""
The gradio worker is responsible for displaying the WebUI and relay the
requests to model workers. It should be launched only once.
Args:
request_queues (List[mp.Queue]): A list of request queues (one for
each model worker).
args (argparse.Namespace): All command line arguments.
barrier (multiprocessing.Barrier): A barrier used to delay the start
of Web UI to be after the start of the model.
"""
def show_user_input(msg, chatbot):
return "", chatbot + [[msg, None]]
def stream_model_output(img_path, audio_path, video_path, point_path, fmri_path, depth_path, depth_rgb_path, normal_path, normal_rgb_path, chatbot, max_gen_len, gen_t, top_p, modality):
for queue in request_queues:
queue.put((img_path, audio_path, video_path, point_path, fmri_path, depth_path, depth_rgb_path, normal_path, normal_rgb_path, chatbot, max_gen_len, gen_t, top_p, modality))
while True:
content_piece = response_queue.get()
chatbot[-1][1] = content_piece["text"]
yield chatbot
if content_piece["end_of_content"]:
break
def undo(chatbot):
if len(chatbot) > 0:
chatbot = chatbot[:-1]
return chatbot
def clear():
chatbot = []
msg = ""
return chatbot, msg
def show_point_cloud(file):
point = load_point(file).numpy()
fig = go.Figure(
data=[
go.Scatter3d(
x=point[:,0], y=point[:,1], z=point[:,2],
mode='markers',
marker=dict(
size=1.2,
color=['rgb({},{},{})'.format(r, g, b) for r,g,b in zip(point[:,3], point[:,4], point[:,5])]
))],
layout=dict(
scene=dict(
xaxis=dict(visible=False),
yaxis=dict(visible=False),
zaxis=dict(visible=False)
)),)
return fig
def change_modality(modal):
return modal
CSS ="""
.contain { display: flex; flex-direction: column; }
#component-0 { height: 100%; }
#chatbot { flex-grow: 1; overflow: auto;}
"""
header="""
## OneLLM: One Framework to Align All Modalities with Language
[[Project Page](https://onellm.csuhan.com)] [[Paper](https://github.com/csuhan/OneLLM/blob/main/OneLLM_Arxiv.pdf)] [[Code](https://github.com/csuhan/OneLLM)]
"""
with gr.Blocks(css=CSS, theme=gr.themes.Base()) as demo:
gr.Markdown(header)
with gr.Row(equal_height=True):
modality = gr.Textbox(value='image', visible=False)
with gr.Column(scale=1):
with gr.Tab('Image') as img_tab:
img_path = gr.Image(label='Image Input', type='filepath')
gr.Examples(
examples=[
"examples/new_york.jpg",
"examples/food_menu.png",
],
inputs=[img_path],
)
with gr.Tab('Video') as video_tab:
video_path = gr.Video(label='Video Input')
gr.Examples(
examples=[
"examples/flower.mp4",
"examples/star_kun.mp4",
],
inputs=[video_path],
)
with gr.Tab('Audio') as audio_tab:
audio_path = gr.Audio(label='Audio Input', type='filepath', sources=['upload'])
gr.Examples(
examples=[
"examples/bell_ring.wav",
"examples/bird_audio.wav",
],
inputs=[audio_path],
)
with gr.Tab('Point Cloud') as point_tab:
point_path = gr.File(label='Point Cloud Input', elem_id="pointpath", elem_classes="")
point_vis = gr.Plot()
btn = gr.Button(value="Show Point Cloud")
btn.click(show_point_cloud, point_path, point_vis)
gr.Examples(
examples=glob.glob("examples/point/*.npy"),
inputs=[point_path],
examples_per_page=5,
)
with gr.Tab('IMU') as imu_tab:
gr.Markdown('Coming soon🤗')
with gr.Tab('fMRI') as fmri_tab:
fmri_path = gr.File(label='fMRI Input', elem_id="fmripath", elem_classes="")
fmri_image_path = gr.Image(label='Reference Image', interactive=False)
gr.Examples(
examples=[
[file.replace('.jpg', '.npy'), file]
for file in glob.glob("examples/fmri/*.jpg")
],
inputs=[fmri_path, fmri_image_path],
examples_per_page=3,
)
with gr.Tab('Depth Map') as depth_tab:
depth_path = gr.Image(label='Depth Map', type='filepath')
depth_rgb_path = gr.Image(label='RGB Image', type='filepath')
gr.Examples(
examples=[
[rgb_image.replace('rgb', 'depth'), rgb_image]
for rgb_image in glob.glob("examples/depth_normal/rgb/*.png")[:9]
],
inputs=[depth_path, depth_rgb_path],
examples_per_page=3,
)
with gr.Tab('Normal Map') as normal_tab:
normal_path = gr.Image(label='Normal Map', type='filepath')
normal_rgb_path = gr.Image(label='RGB Image', type='filepath')
gr.Examples(
examples=[
[rgb_image.replace('rgb', 'normal'), rgb_image]
for rgb_image in glob.glob("examples/depth_normal/rgb/*.png")[9:]
],
inputs=[normal_path, normal_rgb_path],
examples_per_page=3,
)
with gr.Column(scale=2):
chatbot = gr.Chatbot(elem_id="chatbot")
msg = gr.Textbox()
with gr.Row():
submit_button = gr.Button("Submit", variant="primary")
undo_button = gr.Button("Undo")
clear_button = gr.ClearButton([chatbot, msg, img_path, audio_path, video_path, point_path, fmri_path, depth_path, depth_rgb_path, normal_path, normal_rgb_path, point_vis])
with gr.Row():
max_gen_len = gr.Slider(
minimum=1, maximum=args.model_max_seq_len // 2,
value=args.model_max_seq_len // 2, interactive=True,
label="Single-turn max response length",
)
gen_t = gr.Slider(
minimum=0, maximum=1, value=0.1, interactive=True,
label="Temperature",
)
top_p = gr.Slider(
minimum=0, maximum=1, value=0.75, interactive=True,
label="Top-p",
)
img_tab.select(partial(change_modality, 'image'), [], [modality])
video_tab.select(partial(change_modality, 'video'), [], [modality])
audio_tab.select(partial(change_modality, 'audio'), [], [modality])
point_tab.select(partial(change_modality, 'point'), [], [modality])
fmri_tab.select(partial(change_modality, 'fmri'), [], [modality])
depth_tab.select(partial(change_modality, 'rgbd'), [], [modality])
normal_tab.select(partial(change_modality, 'rgbn'), [], [modality])
msg.submit(
show_user_input, [msg, chatbot], [msg, chatbot],
).then(
stream_model_output, [img_path, audio_path, video_path, point_path, fmri_path, depth_path, depth_rgb_path, normal_path, normal_rgb_path, chatbot, max_gen_len, gen_t, top_p, modality], chatbot,
)
submit_button.click(
show_user_input, [msg, chatbot], [msg, chatbot],
).then(
stream_model_output, [img_path, audio_path, video_path, point_path, fmri_path, depth_path, depth_rgb_path, normal_path, normal_rgb_path, chatbot, max_gen_len, gen_t, top_p, modality], chatbot,
)
undo_button.click(undo, chatbot, chatbot)
# img_path.change(clear, [], [chatbot, msg])
barrier.wait()
demo.queue(api_open=True).launch(share=True, max_threads=1)
@dataclass
class DemoConfig:
gpu_ids = [0]
tokenizer_path = "config/llama2/tokenizer.model"
llama_type = "onellm"
llama_config = "config/llama2/7B.json"
model_max_seq_len = 2048
pretrained_path = "csuhan/OneLLM-7B-hf"
# pretrained_path = "/home/pgao/jiaming/weights/7B_v20_splits/"
ckpt_format = "consolidated.00-of-01.s{}.pth"
num_ckpts = 10
master_port = 23863
master_addr = "127.0.0.1"
dtype = "fp16"
if __name__ == "__main__":
args = DemoConfig()
# using the default "fork" method messes up some imported libs (e.g.,
# pandas)
# mp.set_start_method("spawn")
# setup the queues and start the model workers
request_queues = []
response_queue = mp.Queue()
worker_processes = []
barrier = mp.Barrier(len(args.gpu_ids) + 1)
for rank, gpu_id in enumerate(args.gpu_ids):
request_queue = mp.Queue()
rank_response_queue = response_queue if rank == 0 else None
process = mp.Process(
target=model_worker,
args=(rank, args, barrier, request_queue, rank_response_queue),
)
process.start()
worker_processes.append(process)
request_queues.append(request_queue)
gradio_worker(request_queues, response_queue, args, barrier)