OneLLM / data /imu_utils.py
csuhan's picture
Upload folder using huggingface_hub
8b54513
raw
history blame
7.51 kB
import string
import numpy as np
import matplotlib.animation as animation
from matplotlib import pyplot as plt
import json
from collections import defaultdict
from bisect import bisect_left
import os
import torch
import torchaudio
torchaudio.set_audio_backend("sox_io")
def load_json(json_path: str):
"""
Load a json file
"""
with open(json_path, "r", encoding="utf-8") as f_name:
data = json.load(f_name)
return data
def check_window_signal(info_t, w_s, w_e):
length = w_e - w_s
frame_offset = int(w_s * info_t.sample_rate)
num_frames = int(length * info_t.sample_rate)
if frame_offset + num_frames > int(info_t.num_frames):
return False
else:
return True
def index_narrations(ann_path):
narration_raw = load_json(ann_path)
narration_dict = defaultdict(list)
summary_dict = defaultdict(list)
avg_len = []
for v_id, narr in narration_raw.items():
narr_list = []
summ_list = []
if "narration_pass_1" in narr:
narr_list += narr["narration_pass_1"]["narrations"]
summ_list += narr["narration_pass_1"]["summaries"]
if "narration_pass_2" in narr:
narr_list += narr["narration_pass_2"]["narrations"]
summ_list += narr["narration_pass_2"]["summaries"]
if len(narr_list) > 0:
narration_dict[v_id] = [
(
float(n_t["timestamp_sec"]),
n_t["narration_text"],
n_t["annotation_uid"],
n_t["timestamp_frame"],
)
for n_t in narr_list
]
avg_len.append(len(narration_dict[v_id]))
else:
narration_dict[v_id] = []
if len(summ_list) > 0:
summary_dict[v_id] = [
(
float(s_t["start_sec"]),
float(s_t["end_sec"]),
s_t["summary_text"],
)
for s_t in summ_list
]
else:
summary_dict[v_id] = []
# print(f"Number of Videos with narration {len(narration_dict)}")
# print(f"Avg. narration length {np.mean(avg_len)}")
# print(f"Number of Videos with summaries {len(summary_dict)}")
return narration_dict, summary_dict
def get_signal_info(signal_fn: str):
return torchaudio.info(signal_fn)
def get_signal_frames(signal_fn: str, video_start_sec: float, video_end_sec: float):
"""
Given a signal track return the frames between video_start_sec and video_end_sec
"""
info_t = get_signal_info(signal_fn)
length = video_end_sec - video_start_sec
aframes, _ = torchaudio.load(
signal_fn,
normalize=True,
frame_offset=int(video_start_sec * info_t.sample_rate),
num_frames=int(length * info_t.sample_rate),
)
return {"signal": aframes, "meta": info_t}
def tosec(value):
return value / 1000
def toms(value):
return value * 1000
def delta(first_num: float, second_num: float):
"""Compute the absolute value of the difference of two numbers"""
return abs(first_num - second_num)
def padIMU(signal, duration_sec):
"""
Pad the signal if necessary
"""
expected_elements = round(duration_sec) * 200
if signal.shape[0] > expected_elements:
signal = signal[:expected_elements, :]
elif signal.shape[0] < expected_elements:
padding = expected_elements - signal.shape[0]
padded_zeros = np.zeros((padding, 6))
signal = np.concatenate([signal, padded_zeros], 0)
# signal = signal[:expected_elements, :]
return signal
def resample(
signals: np.ndarray,
timestamps: np.ndarray,
original_sample_rate: int,
resample_rate: int,
):
"""
Resamples data to new sample rate
"""
signals = torch.as_tensor(signals)
timestamps = torch.from_numpy(timestamps).unsqueeze(-1)
signals = torchaudio.functional.resample(
waveform=signals.data.T,
orig_freq=original_sample_rate,
new_freq=resample_rate,
).T.numpy()
nsamples = len(signals)
period = 1 / resample_rate
# timestamps are expected to be shape (N, 1)
initital_seconds = timestamps[0] / 1e3
ntimes = (torch.arange(nsamples) * period).view(-1, 1) + initital_seconds
timestamps = (ntimes * 1e3).squeeze().numpy()
return signals, timestamps
def resampleIMU(signal, timestamps):
sampling_rate = int(1000 * (1 / (np.mean(np.diff(timestamps)))))
# resample all to 200hz
if sampling_rate != 200:
signal, timestamps = resample(signal, timestamps, sampling_rate, 200)
return signal, timestamps
def get_imu_frames(
imu_path,
uid: str,
video_start_sec: float,
video_end_sec: float,
):
"""
Given a IMU signal return the frames between video_start_sec and video_end_sec
"""
signal = np.load(os.path.join(imu_path, f"{uid}.npy"))
signal = signal.transpose()
timestamps = np.load(os.path.join(imu_path, f"{uid}_timestamps.npy"))
if toms(video_start_sec) > timestamps[-1] or toms(video_end_sec) > timestamps[-1]:
return None
start_id = bisect_left(timestamps, toms(video_start_sec))
end_id = bisect_left(timestamps, toms(video_end_sec))
# make sure the retrieved window interval are correct by a max of 1 sec margin
if (
delta(video_start_sec, tosec(timestamps[start_id])) > 4
or delta(video_end_sec, tosec(timestamps[end_id])) > 4
):
return None
# get the window
if start_id == end_id:
start_id -= 1
end_id += 1
signal, timestamps = signal[start_id:end_id], timestamps[start_id:end_id]
if len(signal) < 10 or len(timestamps) < 10:
return None
# resample the signal at 200hz if necessary
signal, timestamps = resampleIMU(signal, timestamps)
# pad the signal if necessary
signal = padIMU(signal, video_end_sec - video_start_sec)
sample_dict = {
"timestamp": timestamps,
"signal": torch.tensor(signal.T),
"sampling_rate": 200,
}
return sample_dict
def display_animation(frames, title, save_path_gif):
fig, ax = plt.subplots()
frames = [[ax.imshow(frames[i])] for i in range(len(frames))]
plt.title(title)
ani = animation.ArtistAnimation(fig, frames)
ani.save(save_path_gif, writer="imagemagick")
plt.close()
def display_animation_imu(frames, imu, title, save_path_gif):
fig, (ax1, ax2, ax3) = plt.subplots(3, 1)
ax1.set_title(title)
ax2.set_title("Acc.")
ax3.set_title("Gyro.")
frames = [[ax1.imshow(frames[i])] for i in range(len(frames))]
ani = animation.ArtistAnimation(fig, frames)
ax2.plot(imu[0].cpu().numpy(), color="red")
ax2.plot(imu[1].cpu().numpy(), color="blue")
ax2.plot(imu[2].cpu().numpy(), color="green")
ax3.plot(imu[3].cpu().numpy(), color="red")
ax3.plot(imu[4].cpu().numpy(), color="blue")
ax3.plot(imu[5].cpu().numpy(), color="green")
plt.tight_layout()
ani.save(save_path_gif, writer="imagemagick")
plt.close()
def filter_narration(narration_text: str) -> bool:
if "#c" in narration_text.lower():
return True
return False
def clean_narration_text(narration_text: str) -> str:
return (
narration_text.replace("#C C ", "")
.replace("#C", "")
.replace("#unsure", "something")
.strip()
.strip(string.punctuation)
.lower()[:128]
)