cstr's picture
Update app.py
a5fc8ed verified
raw
history blame
30.3 kB
#python app.py
import gradio as gr
import os
import pandas as pd
import requests
from pathlib import Path
import ctranslate2
import time
import logging
import transformers
import json
import io
from tqdm import tqdm
import subprocess
from huggingface_hub import snapshot_download, upload_file, HfApi, create_repo
# Function to download a Parquet file from a specified URL
def download_parquet(url, local_path):
response = requests.get(url, stream=True)
if response.status_code == 200:
with open(local_path, 'wb') as file:
for chunk in response.iter_content(chunk_size=1024):
file.write(chunk)
print("File downloaded successfully.")
else:
print(f"Failed to download file, status code: {response.status_code}")
# Function to convert Parquet files to JSONL format
def convert_parquet_to_jsonl_polars(input_file, output_dir, override=False):
output_dir_path = Path(output_dir)
output_dir_path.mkdir(parents=True, exist_ok=True)
input_path = Path(input_file)
output_file_path = output_dir_path / input_path.with_suffix(".jsonl").name
if output_file_path.exists() and not override:
print(f"Skipping because output exists already: {output_file_path}")
else:
df = pl.read_parquet(input_path)
df.write_ndjson(output_file_path)
print(f"Data written to {output_file_path}")
def convert_parquet_to_jsonl(parquet_filename, jsonl_filename):
try:
# Read the parquet file
df = pd.read_parquet(parquet_filename)
logger.info(f"Read Parquet file {parquet_filename} successfully.")
# Convert the dataframe to a JSON string and handle Unicode characters and forward slashes
json_str = df.to_json(orient='records', lines=True, force_ascii=False)
logger.info(f"Converted Parquet file to JSON string.")
# Replace escaped forward slashes if needed
json_str = json_str.replace('\\/', '/')
# Write the modified JSON string to the JSONL file
jsonl_filename += '/train.jsonl'
logger.info(f"Attempting to save to {jsonl_filename}")
with open(jsonl_filename, 'w', encoding='utf-8') as file:
file.write(json_str)
logger.info(f"Data saved to {jsonl_filename}")
except Exception as e:
logger.error(f"Failed to convert Parquet to JSONL: {e}")
raise
# Function to count lines in a JSONL file
def count_lines_in_jsonl(file_path):
with open(file_path, 'r', encoding='utf-8') as file:
line_count = sum(1 for _ in file)
return line_count
def parse_range_specification(range_specification, file_length):
line_indices = []
ranges = range_specification.split(',')
for r in ranges:
if '-' in r:
parts = r.split('-')
start = int(parts[0]) - 1 if parts[0] else 0
end = int(parts[1]) - 1 if parts[1] else file_length - 1
if start < 0 or end >= file_length:
logging.error(f"Range {r} is out of bounds.")
continue # Skip ranges that are out of bounds
line_indices.extend(range(start, end + 1))
else:
single_line = int(r) - 1
if single_line < 0 or single_line >= file_length:
logging.error(f"Line number {r} is out of bounds.")
continue # Skip line numbers that are out of bounds
line_indices.append(single_line)
return line_indices
def translate_text(text, translator, tokenizer, target_language):
"""
Translates the given text from English to German using CTranslate2 and the WMT21 model,
with special handling for newlines and segmenting text longer than 500 characters.
Ensures sequences of newlines (\n\n, \n\n\n, etc.) are accurately reproduced.
"""
try:
segments = []
newline_sequences = [] # To store sequences of newlines
segment = ""
i = 0
while i < len(text):
# Collect sequences of newlines
if text[i] == '\n':
newline_sequence = '\n'
while i + 1 < len(text) and text[i + 1] == '\n':
newline_sequence += '\n'
i += 1
if segment:
segments.append(segment) # Add the preceding text segment
segment = ""
newline_sequences.append(newline_sequence) # Store the newline sequence
else:
segment += text[i]
# If segment exceeds 500 characters, or if we reach the end of the text, process it
if len(segment) >= 500 or i == len(text) - 1:
end_index = max(segment.rfind('.', 0, 500), segment.rfind('?', 0, 500), segment.rfind('!', 0, 500))
if end_index != -1 and len(segment) > 500:
# Split at the last punctuation within the first 500 characters
segments.append(segment[:end_index+1])
segment = segment[end_index+1:].lstrip()
else:
# No suitable punctuation or end of text, add the whole segment
segments.append(segment)
segment = ""
i += 1
# Translate the collected text segments
translated_segments = []
for segment in segments:
source = tokenizer.convert_ids_to_tokens(tokenizer.encode(segment))
target_prefix = [tokenizer.lang_code_to_token[target_language]]
results = translator.translate_batch([source], target_prefix=[target_prefix])
target = results[0].hypotheses[0][1:]
translated_segment = tokenizer.decode(tokenizer.convert_tokens_to_ids(target))
translated_segments.append(translated_segment)
# Reassemble the translated text with original newline sequences
translated_text = ""
for i, segment in enumerate(translated_segments):
translated_text += segment
if i < len(newline_sequences):
translated_text += newline_sequences[i] # Insert the newline sequence
return translated_text.strip()
except Exception as e:
logging.error(f"An error occurred during translation: {e}")
return None
def translate_item_ufb(item, raw_file_path, translator, tokenizer, target_language):
try:
# Translate the prompt directly since it's a string
translated_prompt = translate_text(item['prompt'], translator, tokenizer)
# Translate the chosen and rejected contents
translated_chosen = []
for choice in item['chosen']:
translated_content = translate_text(choice['content'], translator, tokenizer, target_language)
translated_chosen.append({'content': translated_content, 'role': choice['role']})
translated_rejected = []
for choice in item['rejected']:
translated_content = translate_text(choice['content'], translator, tokenizer, target_language)
translated_rejected.append({'content': translated_content, 'role': choice['role']})
# Write the raw response to a backup file
with open(raw_file_path, 'a', encoding='utf-8') as raw_file:
raw_file.write(f"Prompt: {translated_prompt}\n")
raw_file.write(f"Chosen: {json.dumps(translated_chosen, ensure_ascii=False)}\n")
raw_file.write(f"Rejected: {json.dumps(translated_rejected, ensure_ascii=False)}\n\n")
logging.info("Translation request successful.")
# Update the original item with the translated fields
item['prompt'] = translated_prompt
item['chosen'] = translated_chosen
item['rejected'] = translated_rejected
return item
except Exception as e:
logging.error(f"An error occurred during translation: {e}")
return None
def validate_item_ufb(item):
# Check basic required fields including 'prompt' as a simple string
required_fields = ['source', 'prompt', 'chosen', 'rejected']
for field in required_fields:
if field not in item:
logging.warning(f"Missing required field: {field}")
return False
if field == 'prompt' and not isinstance(item['prompt'], str):
logging.warning("Prompt must be a string.")
return False
# Check 'chosen' and 'rejected' which should be lists of dictionaries
for field in ['chosen', 'rejected']:
if not isinstance(item[field], list) or not item[field]:
logging.warning(f"No entries or incorrect type for section: {field}")
return False
for idx, message in enumerate(item[field]):
if 'content' not in message or 'role' not in message:
logging.warning(f"Missing 'content' or 'role' field in {field} at index {idx}")
return False
if not isinstance(message['content'], str) or not isinstance(message['role'], str):
logging.warning(f"Invalid type for 'content' or 'role' field in {field} at index {idx}")
return False
return True
def translate_item_mix(item, raw_file_path, translator, tokenizer, target_language):
"""
Translates the relevant fields in the given item from English to German using CTranslate2 and the WMT21 model,
and saves the raw response to a backup file.
"""
#print ("translating:", item)
try:
# Translate each part of the prompt separately and preserve the order
translated_prompts = []
for message in item['prompt']:
translated_content = translate_text(message['content'], translator, tokenizer, target_language)
translated_prompts.append({'content': translated_content, 'role': message['role']})
# Translate the chosen and rejected contents
translated_chosen_content = translate_text(item['chosen'][0]['content'], translator, tokenizer, target_language)
translated_rejected_content = translate_text(item['rejected'][0]['content'], translator, tokenizer, target_language)
# Write the raw response to a backup file
with open(raw_file_path, 'a', encoding='utf-8') as raw_file:
raw_file.write("Prompt content:\n")
for translated_prompt in translated_prompts:
raw_file.write(f"{translated_prompt['role']}: {translated_prompt['content']}\n")
raw_file.write(f"Chosen content: {translated_chosen_content}\n")
raw_file.write(f"Rejected content: {translated_rejected_content}\n\n")
logging.info("Translation request successful.")
except Exception as e:
logging.error(f"An error occurred during translation: {e}")
return None
# Update the original item with the translated fields
item['prompt'] = translated_prompts
item['chosen'][0]['content'] = translated_chosen_content
item['rejected'][0]['content'] = translated_rejected_content
logging.info("Translation processing successful.")
return item
def validate_item_mix(item):
"""
Validates the structure, presence, and content of required fields in the given item,
allowing for multiple elements in the 'prompt' field for multi-turn conversations.
"""
required_fields = ['dataset', 'prompt', 'chosen', 'rejected']
for field in required_fields:
if field not in item:
logging.warning(f"Missing required field: {field}")
return False
# Check for at least one element in 'prompt' and exactly one element in 'chosen' and 'rejected'
if len(item['prompt']) < 1 or len(item['chosen']) != 1 or len(item['rejected']) != 1:
logging.warning("Invalid number of elements in 'prompt', 'chosen', or 'rejected' field.")
return False
# Validate 'content' and 'role' fields in all messages of 'prompt', and single elements of 'chosen' and 'rejected'
for choice in item['prompt'] + item['chosen'] + item['rejected']:
if 'content' not in choice or 'role' not in choice:
logging.warning("Missing 'content' or 'role' field in choice.")
return False
if not isinstance(choice['content'], str) or not isinstance(choice['role'], str):
logging.warning("Invalid type for 'content' or 'role' field in choice.")
return False
return True
def translate_item_ufb_cached(item, raw_file_path, translator, tokenizer, target_language):
try:
translated_texts = {} # Cache to store translated texts
# Translate the prompt if necessary (which is a user input and can appear again)
if item['prompt'] not in translated_texts:
translated_prompt = translate_text(item['prompt'], translator, tokenizer, target_language)
translated_texts[item['prompt']] = translated_prompt
else:
translated_prompt = translated_texts[item['prompt']]
# Helper function to handle content translation with caching
def get_translated_content(content):
if content not in translated_texts:
translated_texts[content] = translate_text(content, translator, tokenizer, target_language)
return translated_texts[content]
# Process translations for chosen and rejected sections
def translate_interactions(interactions):
translated_interactions = []
for interaction in interactions:
translated_content = get_translated_content(interaction['content'])
translated_interactions.append({'content': translated_content, 'role': interaction['role']})
return translated_interactions
translated_chosen = translate_interactions(item['chosen'])
translated_rejected = translate_interactions(item['rejected'])
# Write the raw response to a backup file
with open(raw_file_path, 'a', encoding='utf-8') as raw_file:
raw_file.write(f"Prompt: {translated_prompt}\n")
raw_file.write(f"Chosen: {json.dumps(translated_chosen, ensure_ascii=False)}\n")
raw_file.write(f"Rejected: {json.dumps(translated_rejected, ensure_ascii=False)}\n\n")
logging.info("Translation request successful.")
# Update the original item with the translated fields
item['prompt'] = translated_prompt
item['chosen'] = translated_chosen
item['rejected'] = translated_rejected
return item
except Exception as e:
logging.error(f"An error occurred during translation: {e}")
return None
def validate_item_ufb_cached(item):
# Check basic required fields
required_fields = ['source', 'prompt', 'chosen', 'rejected']
for field in required_fields:
if field not in item:
logging.warning(f"Missing required field: {field}")
return False
# Ensure 'prompt' is a string
if not isinstance(item['prompt'], str):
logging.warning("Prompt must be a string.")
return False
# Check 'chosen' and 'rejected' which should be lists of dictionaries
for field in ['chosen', 'rejected']:
if not isinstance(item[field], list) or not item[field]:
logging.warning(f"No entries or incorrect type for section: {field}")
return False
for idx, message in enumerate(item[field]):
if 'content' not in message or 'role' not in message:
logging.warning(f"Missing 'content' or 'role' field in {field} at index {idx}")
return False
if not isinstance(message['content'], str) or not isinstance(message['role'], str):
logging.warning(f"Invalid type for 'content' or 'role' field in {field} at index {idx}")
return False
return True
def process_file(input_file_path, output_file_path, raw_file_path, line_indices, translator, tokenizer, model_type, target_language):
try:
# Assigning validation and translation functions based on model_type
if model_type == "mix":
print ("translating a mix-style model...")
validate_item = validate_item_mix
translate_item = translate_item_mix
elif model_type == "ufb_cached":
print ("translating an ufb_cached-style model...")
validate_item = validate_item_ufb_cached
translate_item = translate_item_ufb_cached # def translate_item_ufb(item, raw_file_path, translator, tokenizer):
elif model_type == "ufb":
print ("translating an ultrafeedback-style model...")
validate_item = validate_item_ufb
translate_item = translate_item_ufb # def translate_item_ufb(item, raw_file_path, translator, tokenizer):
else:
raise ValueError(f"Unsupported model_type: {model_type}")
with open(input_file_path, 'r', encoding='utf-8') as file:
data_points = [json.loads(line) for line in file]
failed_items = []
failed_items_indices = []
for index in tqdm(line_indices, desc="Processing lines", unit="item"):
item = data_points[index]
# Validate the item structure
if not validate_item(item):
logging.warning("Skipping item due to invalid structure.")
failed_items.append(item)
continue
# Translate the relevant fields in the item
translated_item = None
retry_count = 0
while translated_item is None and retry_count < 3:
print ("going to translate the item...")
translated_item = translate_item(item, raw_file_path, translator, tokenizer, target_language)
retry_count += 1
if translated_item is None:
logging.warning(f"Translation failed for item. Retry attempt: {retry_count}")
time.sleep(1)
if translated_item is not None:
translated_item['index'] = index
with open(output_file_path, 'a', encoding='utf-8') as file:
file.write(json.dumps(translated_item, ensure_ascii=False) + "\n")
else:
failed_items_indices.append(index)
failed_items.append(item)
logging.error("Translation failed after multiple attempts. Skipping item.")
# Validate the translated item structure
if not validate_item(translated_item):
logging.warning("Skipping translated item due to invalid structure.")
failed_items.append(item)
continue
with open('failed_items.jsonl', 'w', encoding='utf-8') as file:
for item in failed_items:
file.write(json.dumps(item, ensure_ascii=False) + "\n")
failed_items_str = generate_failed_items_str(failed_items_indices)
with open('failed_items_index.txt', 'w', encoding='utf-8') as f:
f.write(failed_items_str)
logging.info("Translation completed successfully.")
except Exception as e:
logging.error(f"An error occurred: {e}")
def generate_failed_items_str(indices):
"""
Converts a list of failed item indices into a string.
"""
if not indices:
return ""
# Sort the list of indices and initialize the first range
indices.sort()
range_start = indices[0]
current = range_start
ranges = []
for i in indices[1:]:
if i == current + 1:
current = i
else:
if range_start == current:
ranges.append(f"{range_start}")
else:
ranges.append(f"{range_start}-{current}")
range_start = current = i
# Add the last range
if range_start == current:
ranges.append(f"{range_start}")
else:
ranges.append(f"{range_start}-{current}")
return ",".join(ranges)
# Function to upload the output file to Hugging Face
def upload_output_to_huggingface(output_file_path, repo_name, token):
api = HfApi()
# Check if the repository exists
try:
print ("checking repo:", repo_name)
api.repo_info(repo_id=repo_name, repo_type="dataset", token=token)
except Exception as e:
if "404" in str(e):
# Create the repository if it doesn't exist
print ("creating it...")
create_repo(repo_id=repo_name, repo_type="dataset", token=token)
print(f"Created repository: {repo_name}")
else:
print(f"Failed to check repository existence: {e}")
return
# Upload the file to the repository
try:
print ("starting dataset upload from:", output_file_path)
upload_file(
path_or_fileobj=output_file_path,
path_in_repo=output_file_path,
repo_id=repo_name,
repo_type="dataset",
token=token
)
print(f"Uploaded {output_file_path} to Hugging Face repository: {repo_name}")
except Exception as e:
print(f"Failed to upload {output_file_path} to Hugging Face: {e}")
raise
def translate_dataset(train_url, local_parquet_path, input_file_path, output_file_path, raw_file_path, range_specification, model_type, output_dir, output_repo_name, token, translator, tokenizer, target_language):
try:
# Download the Parquet file
download_parquet(train_url, local_parquet_path)
except Exception as e:
logging.error(f"Failed to download the Parquet file from {train_url}: {e}")
return
try:
# Convert the downloaded Parquet file to JSONL
convert_parquet_to_jsonl(local_parquet_path, output_dir)
except Exception as e:
logging.error(f"Failed to convert Parquet to JSONL: {e}")
return
try:
# Rename the JSONL file using subprocess to ensure correct handling
subprocess.run(["mv", f"{output_dir}/train.jsonl", input_file_path], check=True)
except subprocess.CalledProcessError as e:
logging.error(f"Failed to rename the file from 'train.jsonl' to {input_file_path}: {e}")
return
try:
# Count lines in the JSONL file to validate contents
line_count = count_lines_in_jsonl(input_file_path)
logging.info(f"Number of lines in the file: {line_count}")
except Exception as e:
logging.error(f"Failed to count lines in {input_file_path}: {e}")
return
try:
# Parse the range specification for processing specific lines
line_indices = parse_range_specification(range_specification, file_length=line_count)
if not line_indices:
logging.error("No valid line indices to process. Please check the range specifications.")
return
except Exception as e:
logging.error(f"Error parsing range specification '{range_specification}': {e}")
return
try:
# Process the file with specified model type and line indices
process_file(input_file_path, output_file_path, raw_file_path, line_indices, translator, tokenizer, model_type, target_language)
except Exception as e:
logging.error(f"Failed to process the file {input_file_path}: {e}")
return
try:
# Upload the output file to Hugging Face repository
upload_output_to_huggingface(output_file_path, output_repo_name, token)
except Exception as e:
logging.error(f"Failed to upload {output_file_path} to Hugging Face: {e}")
# Setup logging configuration
log_stream = io.StringIO()
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("translation.log", mode='a'),
logging.StreamHandler(log_stream)
])
logger = logging.getLogger(__name__)
# Main function to handle the translation workflow
# Main function to handle the translation workflow
def main(dataset_url, model_type, output_dataset_name, range_specification, target_language, token: gr.OAuthToken | None, profile: gr.OAuthProfile | None):
try:
# Login to Hugging Face
if token is None or profile is None or token.token is None or profile.username is None:
return "### You must be logged in to use this service."
if token:
logger.info("Logged in to Hugging Face")
# Configuration and paths
tokenizer_name = "facebook/wmt21-dense-24-wide-en-x"
model_repo_name = "cstr/wmt21ct2_int8" # Repository to download the model from
# Download the model snapshot from Hugging Face
model_path = snapshot_download(repo_id=model_repo_name, token=token.token)
logger.info(f"Model downloaded to: {model_path}")
# Load the CTranslate2 model
translator = ctranslate2.Translator(model_path, device="auto")
logger.info("CTranslate2 model loaded successfully.")
# Load the tokenizer
tokenizer = transformers.AutoTokenizer.from_pretrained(tokenizer_name)
tokenizer.src_lang = "en"
tokenizer.tgt_lang = target_language # Set target language
logger.info("Tokenizer loaded successfully.")
# Define the task based on user input
task = {
"url": dataset_url,
"local_path": "train.parquet",
"input_file": f"{model_type}_en.jsonl",
"output_file": f"{model_type}_{target_language}.jsonl", # Include target language in the filename
"raw_file": f"{model_type}_{target_language}_raw.jsonl",
"range_spec": range_specification,
"model_type": model_type,
"target_language": target_language # Include target language in the task
}
# Call the translate_dataset function with the provided parameters
translate_dataset(
train_url=task["url"],
local_parquet_path=task["local_path"],
input_file_path=task["input_file"],
output_file_path=task["output_file"],
output_dir=".",
output_repo_name=output_dataset_name,
raw_file_path=task["raw_file"],
token=token.token,
range_specification=task["range_spec"],
model_type=task["model_type"],
translator=translator,
tokenizer=tokenizer,
target_language=task["target_language"] # Pass the target language
)
logger.info("Dataset translation completed!")
return "Dataset translation completed!\n\n### Logs:\n" + log_stream.getvalue()
else:
return "Login failed. Please try again."
except Exception as e:
logger.error(f"An error occurred in the main function: {e}")
return f"An error occurred: {e}\n\n### Logs:\n{log_stream.getvalue()}"
# Gradio interface setup
gradio_title = "🧐 WMT21 Dataset Translation"
gradio_desc = """This tool translates english datasets using the WMT21 translation model.
## πŸ’­ What Does This Tool Do:
- Translates datasets (as parquet files) with structures based on the selected model type (see below).
- The translation model (facebook/wmt21-dense-24-wide-en-x) supports as target languages: Hausa (ha), Icelandic (is), Japanese (ja), Czech (cs), Russian (ru), Chinese (zh), German (de)
- Uploads the translated dataset as jsonl to Hugging Face.
- At the moment, this works only on CPU, and therefore is very very slow."""
datasets_desc = """## πŸ“Š Dataset Types:
Note: additional fields will be kept (untranslated), an additional index field is added, which makes it easier to verify results, i.a.
- **mix**:
- `prompt`: List of dictionaries with 'content' and 'role' fields (multi-turn conversation).
- `chosen`: Single dictionary with 'content' and 'role' fields.
- `rejected`: Single dictionary with 'content' and 'role' fields.
- **ufb_cached**:
- `prompt`: String (user input).
- `chosen`: List of dictionaries with 'content' and 'role' fields.
- `rejected`: List of dictionaries with 'content' and 'role' fields.
- **ufb**:
- like ufb_cached, but we do not check for already translated strings
## πŸ› οΈ Backend:
The translation model is int8 quantized from facebook/wmt21-dense-24-wide-en-x and runs via ctranslate2 on the Hugging Face Hub."""
# Define the theme
theme = gr.themes.Soft(text_size="lg", spacing_size="lg")
with gr.Blocks(theme=theme) as demo:
gr.HTML(f"""<h1 align="center" id="space-title">{gradio_title}</h1>""")
gr.Markdown(gradio_desc)
with gr.Row(variant="panel"):
gr.Markdown(value="## πŸš€ Login to Hugging Face"),
gr.LoginButton(min_width=380)
gr.Markdown(value="🚨 **This is needed to upload the resulting dataset.**")
with gr.Row(equal_height=False):
with gr.Column():
dataset_url = gr.Textbox(label="Input Dataset URL", lines=2, placeholder = "https://huggingface.co/datasets/alvarobartt/dpo-mix-7k-simplified/resolve/main/data/train-00000-of-00001.parquet?download=true")
model_type = gr.Dropdown(choices=["mix", "ufb_cached", "ufb"], label="Dataset Type")
output_dataset_name = gr.Textbox(label="Output Dataset Name", lines=1, placeholder = "cstr/translated_datasets")
range_specification = gr.Textbox(label="Range Specification", lines=1, placeholder="e.g., 1-100")
target_language = gr.Dropdown(choices=["ha", "is", "ja", "cs", "ru", "zh", "de"], label="Target Language") # New dropdown for target language
with gr.Column():
output = gr.Markdown(label="Output")
submit_btn = gr.Button("Translate Dataset", variant="primary")
submit_btn.click(main, inputs=[dataset_url, model_type, output_dataset_name, range_specification, target_language], outputs=output)
gr.Markdown(datasets_desc)
demo.queue(max_size=10).launch(share=True, show_api=True)