YOLO-World3 / tools /deploy.py
stevengrove
initial commit
186701e
raw
history blame
11.5 kB
# Copyright (c) Tencent Inc. All rights reserved.
import argparse
import logging
import os
import os.path as osp
from functools import partial
import mmengine
import torch.multiprocessing as mp
from torch.multiprocessing import Process, set_start_method
from mmdeploy.apis import (create_calib_input_data, extract_model,
get_predefined_partition_cfg, torch2onnx,
torch2torchscript, visualize_model)
from mmdeploy.apis.core import PIPELINE_MANAGER
from mmdeploy.apis.utils import to_backend
from mmdeploy.backend.sdk.export_info import export2SDK
from mmdeploy.utils import (IR, Backend, get_backend, get_calib_filename,
get_ir_config, get_partition_config,
get_root_logger, load_config, target_wrapper)
def parse_args():
parser = argparse.ArgumentParser(description='Export model to backends.')
parser.add_argument('deploy_cfg', help='deploy config path')
parser.add_argument('model_cfg', help='model config path')
parser.add_argument('checkpoint', help='model checkpoint path')
parser.add_argument('img', help='image used to convert model model')
parser.add_argument(
'--test-img',
default=None,
type=str,
nargs='+',
help='image used to test model')
parser.add_argument(
'--work-dir',
default=os.getcwd(),
help='the dir to save logs and models')
parser.add_argument(
'--calib-dataset-cfg',
help='dataset config path used to calibrate in int8 mode. If not \
specified, it will use "val" dataset in model config instead.',
default=None)
parser.add_argument(
'--device', help='device used for conversion', default='cpu')
parser.add_argument(
'--log-level',
help='set log level',
default='INFO',
choices=list(logging._nameToLevel.keys()))
parser.add_argument(
'--show', action='store_true', help='Show detection outputs')
parser.add_argument(
'--dump-info', action='store_true', help='Output information for SDK')
parser.add_argument(
'--quant-image-dir',
default=None,
help='Image directory for quantize model.')
parser.add_argument(
'--quant', action='store_true', help='Quantize model to low bit.')
parser.add_argument(
'--uri',
default='192.168.1.1:60000',
help='Remote ipv4:port or ipv6:port for inference on edge device.')
args = parser.parse_args()
return args
def create_process(name, target, args, kwargs, ret_value=None):
logger = get_root_logger()
logger.info(f'{name} start.')
log_level = logger.level
wrap_func = partial(target_wrapper, target, log_level, ret_value)
process = Process(target=wrap_func, args=args, kwargs=kwargs)
process.start()
process.join()
if ret_value is not None:
if ret_value.value != 0:
logger.error(f'{name} failed.')
exit(1)
else:
logger.info(f'{name} success.')
def torch2ir(ir_type: IR):
"""Return the conversion function from torch to the intermediate
representation.
Args:
ir_type (IR): The type of the intermediate representation.
"""
if ir_type == IR.ONNX:
return torch2onnx
elif ir_type == IR.TORCHSCRIPT:
return torch2torchscript
else:
raise KeyError(f'Unexpected IR type {ir_type}')
def main():
args = parse_args()
set_start_method('spawn', force=True)
logger = get_root_logger()
log_level = logging.getLevelName(args.log_level)
logger.setLevel(log_level)
pipeline_funcs = [
torch2onnx, torch2torchscript, extract_model, create_calib_input_data
]
PIPELINE_MANAGER.enable_multiprocess(True, pipeline_funcs)
PIPELINE_MANAGER.set_log_level(log_level, pipeline_funcs)
deploy_cfg_path = args.deploy_cfg
model_cfg_path = args.model_cfg
checkpoint_path = args.checkpoint
quant = args.quant
quant_image_dir = args.quant_image_dir
# load deploy_cfg
deploy_cfg, model_cfg = load_config(deploy_cfg_path, model_cfg_path)
# create work_dir if not
mmengine.mkdir_or_exist(osp.abspath(args.work_dir))
if args.dump_info:
export2SDK(
deploy_cfg,
model_cfg,
args.work_dir,
pth=checkpoint_path,
device=args.device)
ret_value = mp.Value('d', 0, lock=False)
# convert to IR
ir_config = get_ir_config(deploy_cfg)
ir_save_file = ir_config['save_file']
ir_type = IR.get(ir_config['type'])
torch2ir(ir_type)(
args.img,
args.work_dir,
ir_save_file,
deploy_cfg_path,
model_cfg_path,
checkpoint_path,
device=args.device)
# convert backend
ir_files = [osp.join(args.work_dir, ir_save_file)]
# partition model
partition_cfgs = get_partition_config(deploy_cfg)
if partition_cfgs is not None:
if 'partition_cfg' in partition_cfgs:
partition_cfgs = partition_cfgs.get('partition_cfg', None)
else:
assert 'type' in partition_cfgs
partition_cfgs = get_predefined_partition_cfg(
deploy_cfg, partition_cfgs['type'])
origin_ir_file = ir_files[0]
ir_files = []
for partition_cfg in partition_cfgs:
save_file = partition_cfg['save_file']
save_path = osp.join(args.work_dir, save_file)
start = partition_cfg['start']
end = partition_cfg['end']
dynamic_axes = partition_cfg.get('dynamic_axes', None)
extract_model(
origin_ir_file,
start,
end,
dynamic_axes=dynamic_axes,
save_file=save_path)
ir_files.append(save_path)
# calib data
calib_filename = get_calib_filename(deploy_cfg)
if calib_filename is not None:
calib_path = osp.join(args.work_dir, calib_filename)
create_calib_input_data(
calib_path,
deploy_cfg_path,
model_cfg_path,
checkpoint_path,
dataset_cfg=args.calib_dataset_cfg,
dataset_type='val',
device=args.device)
backend_files = ir_files
# convert backend
backend = get_backend(deploy_cfg)
# preprocess deploy_cfg
if backend == Backend.RKNN:
# TODO: Add this to task_processor in the future
import tempfile
from mmdeploy.utils import (get_common_config, get_normalization,
get_quantization_config,
get_rknn_quantization)
quantization_cfg = get_quantization_config(deploy_cfg)
common_params = get_common_config(deploy_cfg)
if get_rknn_quantization(deploy_cfg) is True:
transform = get_normalization(model_cfg)
common_params.update(
dict(
mean_values=[transform['mean']],
std_values=[transform['std']]))
dataset_file = tempfile.NamedTemporaryFile(suffix='.txt').name
with open(dataset_file, 'w') as f:
f.writelines([osp.abspath(args.img)])
if quantization_cfg.get('dataset', None) is None:
quantization_cfg['dataset'] = dataset_file
if backend == Backend.ASCEND:
# TODO: Add this to backend manager in the future
if args.dump_info:
from mmdeploy.backend.ascend import update_sdk_pipeline
update_sdk_pipeline(args.work_dir)
if backend == Backend.VACC:
# TODO: Add this to task_processor in the future
from onnx2vacc_quant_dataset import get_quant
from mmdeploy.utils import get_model_inputs
deploy_cfg, model_cfg = load_config(deploy_cfg_path, model_cfg_path)
model_inputs = get_model_inputs(deploy_cfg)
for onnx_path, model_input in zip(ir_files, model_inputs):
quant_mode = model_input.get('qconfig', {}).get('dtype', 'fp16')
assert quant_mode in ['int8',
'fp16'], quant_mode + ' not support now'
shape_dict = model_input.get('shape', {})
if quant_mode == 'int8':
create_process(
'vacc quant dataset',
target=get_quant,
args=(deploy_cfg, model_cfg, shape_dict, checkpoint_path,
args.work_dir, args.device),
kwargs=dict(),
ret_value=ret_value)
# convert to backend
PIPELINE_MANAGER.set_log_level(log_level, [to_backend])
if backend == Backend.TENSORRT:
PIPELINE_MANAGER.enable_multiprocess(True, [to_backend])
backend_files = to_backend(
backend,
ir_files,
work_dir=args.work_dir,
deploy_cfg=deploy_cfg,
log_level=log_level,
device=args.device,
uri=args.uri)
# ncnn quantization
if backend == Backend.NCNN and quant:
from onnx2ncnn_quant_table import get_table
from mmdeploy.apis.ncnn import get_quant_model_file, ncnn2int8
model_param_paths = backend_files[::2]
model_bin_paths = backend_files[1::2]
backend_files = []
for onnx_path, model_param_path, model_bin_path in zip(
ir_files, model_param_paths, model_bin_paths):
deploy_cfg, model_cfg = load_config(deploy_cfg_path,
model_cfg_path)
quant_onnx, quant_table, quant_param, quant_bin = get_quant_model_file( # noqa: E501
onnx_path, args.work_dir)
create_process(
'ncnn quant table',
target=get_table,
args=(onnx_path, deploy_cfg, model_cfg, quant_onnx,
quant_table, quant_image_dir, args.device),
kwargs=dict(),
ret_value=ret_value)
create_process(
'ncnn_int8',
target=ncnn2int8,
args=(model_param_path, model_bin_path, quant_table,
quant_param, quant_bin),
kwargs=dict(),
ret_value=ret_value)
backend_files += [quant_param, quant_bin]
if args.test_img is None:
args.test_img = args.img
extra = dict(
backend=backend,
output_file=osp.join(args.work_dir, f'output_{backend.value}.jpg'),
show_result=args.show)
if backend == Backend.SNPE:
extra['uri'] = args.uri
# get backend inference result, try render
create_process(
f'visualize {backend.value} model',
target=visualize_model,
args=(model_cfg_path, deploy_cfg_path, backend_files, args.test_img,
args.device),
kwargs=extra,
ret_value=ret_value)
# get pytorch model inference result, try visualize if possible
create_process(
'visualize pytorch model',
target=visualize_model,
args=(model_cfg_path, deploy_cfg_path, [checkpoint_path],
args.test_img, args.device),
kwargs=dict(
backend=Backend.PYTORCH,
output_file=osp.join(args.work_dir, 'output_pytorch.jpg'),
show_result=args.show),
ret_value=ret_value)
logger.info('All process success.')
if __name__ == '__main__':
main()