Upload 4 files
Browse files
app.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
RUN BELOW FIRST THEN RUN BELOW
|
2 |
+
|
3 |
+
# First run the code to get the validation metrics of best.pt
|
4 |
+
|
5 |
+
from ultralytics import YOLO
|
6 |
+
|
7 |
+
model_path = "best.pt" # your trained model
|
8 |
+
data_yaml_path = "/content/bccd_rbc_wbc_platelets-1/data.yaml" # dataset configuration file
|
9 |
+
|
10 |
+
#model = YOLO(model_path)
|
11 |
+
#metrics = model.val(data=data_yaml_path) # ensure data.yaml points to the correct valid set
|
12 |
+
|
13 |
+
# Extract overall metrics
|
14 |
+
#overall_precision = metrics.box.mp # mean precision over all classes
|
15 |
+
#overall_recall = metrics.box.mr # mean recall over all classes
|
16 |
+
#overall_map50 = metrics.box.map50 # mean AP at IoU=0.5 over all classes
|
17 |
+
#overall_map = metrics.box.map # mean AP at IoU=0.5:0.95 over all classes
|
18 |
+
#overall_map75 = metrics.box.map75 # mean AP at IoU=0.75 over all classes
|
19 |
+
|
20 |
+
# Extract per-class metrics
|
21 |
+
#class_names = model.names # or load from data.yaml if needed, same as model.names
|
22 |
+
#class_metrics = []
|
23 |
+
#for i, cname in enumerate(class_names):
|
24 |
+
# p, r, ap50, ap = metrics.box.class_result(i)
|
25 |
+
# class_metrics.append((cname, p, r, ap50, ap))
|
26 |
+
|
27 |
+
#print("Overall Metrics:")
|
28 |
+
#print(f"Precision: {overall_precision}")
|
29 |
+
#print(f"Recall: {overall_recall}")
|
30 |
+
#print(f"mAP50: {overall_map50}")
|
31 |
+
#print(f"mAP50-95: {overall_map}")
|
32 |
+
#print(f"mAP75: {overall_map75}")
|
33 |
+
#print("\nPer-Class Metrics:")
|
34 |
+
#for (cname, p, r, ap50, ap) in class_metrics:
|
35 |
+
# print(f"{cname}: Precision={p}, Recall={r}, mAP50={ap50}, mAP50-95={ap}")
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
############ Take the values from abover and put them below manually
|
40 |
+
|
41 |
+
|
42 |
+
############## Use below for production with manual metrics input
|
43 |
+
|
44 |
+
|
45 |
+
import os
|
46 |
+
import torch
|
47 |
+
import cv2
|
48 |
+
import numpy as np
|
49 |
+
from ultralytics import YOLO
|
50 |
+
from PIL import Image
|
51 |
+
import yaml
|
52 |
+
import gradio as gr
|
53 |
+
import pandas as pd
|
54 |
+
|
55 |
+
model_path = "best.pt"
|
56 |
+
data_yaml_path = "data.yaml"
|
57 |
+
|
58 |
+
if not os.path.exists(model_path):
|
59 |
+
raise FileNotFoundError(f"Model file not found at {model_path}.")
|
60 |
+
if not os.path.exists(data_yaml_path):
|
61 |
+
raise FileNotFoundError(f"data.yaml not found at {data_yaml_path}.")
|
62 |
+
|
63 |
+
# Load the YOLO model
|
64 |
+
model = YOLO(model_path)
|
65 |
+
|
66 |
+
# Load class names
|
67 |
+
with open(data_yaml_path, 'r') as stream:
|
68 |
+
data_dict = yaml.safe_load(stream)
|
69 |
+
class_names = data_dict['names'] # e.g., ['Platelets', 'RBC', 'WBC'] if those are your classes
|
70 |
+
|
71 |
+
##################################
|
72 |
+
# Hardcoded metrics from your provided values:
|
73 |
+
overall_precision = 0.870496260646755
|
74 |
+
overall_recall = 0.8460399765524981
|
75 |
+
overall_map50 = 0.9160845656283895
|
76 |
+
overall_map = 0.6064155939296477
|
77 |
+
overall_map75 = 0.6557004942673867
|
78 |
+
|
79 |
+
# Per-Class Metrics (index as per data.yaml order)
|
80 |
+
# Here we assume the class order matches the indices:
|
81 |
+
# class_names[0], class_names[1], class_names[2], etc.
|
82 |
+
class0_precision = 0.7648872215366018
|
83 |
+
class0_recall = 0.9452054794520548
|
84 |
+
class0_map50 = 0.9106238743284377
|
85 |
+
class0_map = 0.44560784653430324
|
86 |
+
|
87 |
+
class1_precision = 0.8560449257059868
|
88 |
+
class1_recall = 0.6329144502054396
|
89 |
+
class1_map50 = 0.8441600369816818
|
90 |
+
class1_map = 0.5859616928719056
|
91 |
+
|
92 |
+
class2_precision = 0.9905566346976764
|
93 |
+
class2_recall = 0.96
|
94 |
+
class2_map50 = 0.9934697855750487
|
95 |
+
class2_map = 0.7876772423827341
|
96 |
+
|
97 |
+
# Construct the metrics DataFrame
|
98 |
+
metrics_data = [
|
99 |
+
["Overall", overall_precision, overall_recall, overall_map50, overall_map],
|
100 |
+
[class_names[0], class0_precision, class0_recall, class0_map50, class0_map],
|
101 |
+
[class_names[1], class1_precision, class1_recall, class1_map50, class1_map],
|
102 |
+
[class_names[2], class2_precision, class2_recall, class2_map50, class2_map]
|
103 |
+
]
|
104 |
+
metrics_df = pd.DataFrame(metrics_data, columns=["Class", "Precision", "Recall", "mAP50", "mAP50-95"])
|
105 |
+
##################################
|
106 |
+
|
107 |
+
def run_inference(img: np.ndarray, model):
|
108 |
+
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
109 |
+
results = model.predict(img_rgb, conf=0.25, iou=0.6)
|
110 |
+
detections = []
|
111 |
+
res = results[0]
|
112 |
+
boxes = res.boxes
|
113 |
+
if boxes is not None and len(boxes) > 0:
|
114 |
+
for i in range(len(boxes)):
|
115 |
+
xyxy = boxes.xyxy[i].tolist()
|
116 |
+
conf = float(boxes.conf[i])
|
117 |
+
cls_idx = int(boxes.cls[i])
|
118 |
+
class_name = class_names[cls_idx]
|
119 |
+
detections.append([class_name, conf, *xyxy])
|
120 |
+
return detections
|
121 |
+
|
122 |
+
def draw_boxes(image: np.ndarray, detections):
|
123 |
+
# Define a color palette for classes (BGR)
|
124 |
+
palette = [
|
125 |
+
(0, 255, 0), # Green
|
126 |
+
(255, 0, 0), # Blue
|
127 |
+
(0, 0, 255), # Red
|
128 |
+
(255, 255, 0), # Cyan
|
129 |
+
(255, 0, 255), # Magenta
|
130 |
+
(0, 255, 255), # Yellow
|
131 |
+
(128, 0, 128), # Purple
|
132 |
+
(128, 128, 0), # Olive
|
133 |
+
(0, 128, 128), # Teal
|
134 |
+
]
|
135 |
+
num_colors = len(palette)
|
136 |
+
|
137 |
+
for det in detections:
|
138 |
+
class_name, conf, x1, y1, x2, y2 = det
|
139 |
+
cls_idx = class_names.index(class_name)
|
140 |
+
color = palette[cls_idx % num_colors]
|
141 |
+
|
142 |
+
cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)
|
143 |
+
|
144 |
+
# Text settings
|
145 |
+
label = f"{class_name} {conf:.2f}"
|
146 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
147 |
+
font_scale = 0.8
|
148 |
+
thickness = 2
|
149 |
+
|
150 |
+
(tw, th), _ = cv2.getTextSize(label, font, font_scale, thickness)
|
151 |
+
# Draw filled rectangle behind text
|
152 |
+
cv2.rectangle(image, (int(x1), int(y1)-th-8), (int(x1)+tw, int(y1)), color, -1)
|
153 |
+
# Put text in white for visibility
|
154 |
+
cv2.putText(image, label, (int(x1), int(y1)-5), font, font_scale, (255, 255, 255), thickness, cv2.LINE_AA)
|
155 |
+
|
156 |
+
return image
|
157 |
+
|
158 |
+
def process_image(image):
|
159 |
+
img = np.array(image)
|
160 |
+
img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
161 |
+
|
162 |
+
detections = run_inference(img_bgr, model)
|
163 |
+
|
164 |
+
annotated_img = draw_boxes(img_bgr.copy(), detections)
|
165 |
+
annotated_img_rgb = cv2.cvtColor(annotated_img, cv2.COLOR_BGR2RGB)
|
166 |
+
|
167 |
+
det_df = pd.DataFrame(detections, columns=["Class", "Confidence", "x1", "y1", "x2", "y2"])
|
168 |
+
|
169 |
+
# Return annotated image, detection results, and hardcoded metrics table
|
170 |
+
return Image.fromarray(annotated_img_rgb), det_df, metrics_df
|
171 |
+
|
172 |
+
with gr.Blocks() as demo:
|
173 |
+
gr.Markdown("# YOLO11 Object Detection Web App with Hardcoded Metrics")
|
174 |
+
gr.Markdown("Upload an image and the model will return bounding boxes, classes, and confidence scores.")
|
175 |
+
gr.Markdown("Metrics shown below are pre-computed and hardcoded into the code.")
|
176 |
+
|
177 |
+
with gr.Row():
|
178 |
+
with gr.Column():
|
179 |
+
input_image = gr.Image(type="pil", label="Upload Image")
|
180 |
+
submit_btn = gr.Button("Run Inference")
|
181 |
+
with gr.Column():
|
182 |
+
output_image = gr.Image(type="pil", label="Annotated Image")
|
183 |
+
det_results = gr.DataFrame(label="Detection Results")
|
184 |
+
metrics_table = gr.DataFrame(value=metrics_df, label="Validation Metrics")
|
185 |
+
|
186 |
+
submit_btn.click(fn=process_image, inputs=input_image, outputs=[output_image, det_results, metrics_table])
|
187 |
+
|
188 |
+
demo.launch()
|
189 |
+
|
best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2851a96274ac45717e64fd1dad11b053e12f8155daa159ac68dfa694f3d539d1
|
3 |
+
size 5458195
|
data.yaml
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
nc: 3
|
2 |
+
names: ['Platelets', 'RBC', 'WBC']
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
ultralytics
|
2 |
+
gradio
|