|
"""Contains all of the components that can be used with Gradio Interface / Blocks. |
|
Along with the docs for each component, you can find the names of example demos that use |
|
each component. These demos are located in the `demo` directory.""" |
|
|
|
from __future__ import annotations |
|
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type |
|
import json |
|
import gradio as gr |
|
|
|
import os |
|
import traceback |
|
import requests |
|
|
|
import csv |
|
import mdtex2html |
|
|
|
if TYPE_CHECKING: |
|
from typing import TypedDict |
|
|
|
class DataframeData(TypedDict): |
|
headers: List[str] |
|
data: List[List[str | int | bool]] |
|
|
|
initial_prompt = "You are a helpful assistant." |
|
API_URL = "https://api.openai.com/v1/chat/completions" |
|
HISTORY_DIR = "history" |
|
TEMPLATES_DIR = "templates" |
|
|
|
def postprocess( |
|
self, y: List[Tuple[str | None, str | None]] |
|
) -> List[Tuple[str | None, str | None]]: |
|
""" |
|
Parameters: |
|
y: List of tuples representing the message and response pairs. Each message and response should be a string, which may be in Markdown format. |
|
Returns: |
|
List of tuples representing the message and response. Each message and response will be a string of HTML. |
|
""" |
|
if y is None: |
|
return [] |
|
for i, (message, response) in enumerate(y): |
|
y[i] = ( |
|
|
|
|
|
None if message is None else mdtex2html.convert(message), |
|
None if response is None else mdtex2html.convert(response), |
|
) |
|
return y |
|
|
|
def parse_text(text): |
|
lines = text.split("\n") |
|
lines = [line for line in lines if line != ""] |
|
count = 0 |
|
firstline = False |
|
for i, line in enumerate(lines): |
|
if "```" in line: |
|
count += 1 |
|
items = line.split('`') |
|
if count % 2 == 1: |
|
lines[i] = f'<pre><code class="language-{items[-1]}">' |
|
else: |
|
lines[i] = f'<br></code></pre>' |
|
else: |
|
if i > 0: |
|
if count % 2 == 1: |
|
|
|
|
|
line = line.replace("`", "\`") |
|
|
|
|
|
|
|
|
|
line = line.replace("<", "<") |
|
line = line.replace(">", ">") |
|
line = line.replace(" ", " ") |
|
line = line.replace("*", "*") |
|
line = line.replace("_", "_") |
|
line = line.replace("-", "-") |
|
line = line.replace(".", ".") |
|
line = line.replace("!", "!") |
|
line = line.replace("(", "(") |
|
line = line.replace(")", ")") |
|
line = line.replace("$", "$") |
|
lines[i] = "<br>"+line |
|
text = "".join(lines) |
|
return text |
|
|
|
def predict(inputs, top_p, temperature, openai_api_key, chatbot=[], history=[], system_prompt=initial_prompt, retry=False, summary=False, retry_on_crash = False, stream = True): |
|
|
|
if retry_on_crash: |
|
retry = True |
|
|
|
headers = { |
|
"Content-Type": "application/json", |
|
"Authorization": f"Bearer {openai_api_key}" |
|
} |
|
|
|
chat_counter = len(history) // 2 |
|
|
|
print(f"chat_counter - {chat_counter}") |
|
|
|
messages = [] |
|
if chat_counter: |
|
for index in range(0, 2*chat_counter, 2): |
|
temp1 = {} |
|
temp1["role"] = "user" |
|
temp1["content"] = history[index] |
|
temp2 = {} |
|
temp2["role"] = "assistant" |
|
temp2["content"] = history[index+1] |
|
if temp1["content"] != "": |
|
if temp2["content"] != "" or retry: |
|
messages.append(temp1) |
|
messages.append(temp2) |
|
else: |
|
messages[-1]['content'] = temp2['content'] |
|
if retry and chat_counter: |
|
if retry_on_crash: |
|
messages = messages[-6:] |
|
messages.pop() |
|
elif summary: |
|
history = [*[i["content"] for i in messages[-2:]], "我们刚刚聊了什么?"] |
|
messages.append(compose_user( |
|
"请帮我总结一下上述对话的内容,实现减少字数的同时,保证对话的质量。在总结中不要加入这一句话。")) |
|
else: |
|
temp3 = {} |
|
temp3["role"] = "user" |
|
temp3["content"] = inputs |
|
messages.append(temp3) |
|
chat_counter += 1 |
|
messages = [compose_system(system_prompt), *messages] |
|
|
|
payload = { |
|
"model": "gpt-3.5-turbo", |
|
"messages": messages, |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"n": 1, |
|
"stream": stream, |
|
"presence_penalty": 0, |
|
"frequency_penalty": 0, |
|
} |
|
|
|
if not summary: |
|
history.append(inputs) |
|
else: |
|
print("精简中...") |
|
|
|
print(f"payload: {payload}") |
|
|
|
try: |
|
response = requests.post(API_URL, headers=headers, json=payload, stream=True) |
|
except: |
|
history.append("") |
|
chatbot.append(inputs, "") |
|
yield history, chatbot, f"出现了网络错误" |
|
return |
|
|
|
token_counter = 0 |
|
partial_words = "" |
|
|
|
counter = 0 |
|
if stream: |
|
chatbot.append((parse_text(history[-1]), "")) |
|
for chunk in response.iter_lines(): |
|
if counter == 0: |
|
counter += 1 |
|
continue |
|
counter += 1 |
|
|
|
if chunk: |
|
|
|
try: |
|
if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0: |
|
chunkjson = json.loads(chunk.decode()[6:]) |
|
status_text = f"id: {chunkjson['id']}, finish_reason: {chunkjson['choices'][0]['finish_reason']}" |
|
yield chatbot, history, status_text |
|
break |
|
except Exception as e: |
|
traceback.print_exc() |
|
if not retry_on_crash: |
|
print("正在尝试使用缩短的context重新生成……") |
|
chatbot.pop() |
|
history.append("") |
|
yield next(predict(inputs, top_p, temperature, openai_api_key, chatbot, history, system_prompt, retry, summary=False, retry_on_crash=True, stream=False)) |
|
else: |
|
msg = "☹️发生了错误:生成失败,请检查网络" |
|
print(msg) |
|
history.append(inputs, "") |
|
chatbot.append(inputs, msg) |
|
yield chatbot, history, "status: ERROR" |
|
break |
|
chunkjson = json.loads(chunk.decode()[6:]) |
|
status_text = f"id: {chunkjson['id']}, finish_reason: {chunkjson['choices'][0]['finish_reason']}" |
|
partial_words = partial_words + \ |
|
json.loads(chunk.decode()[6:])[ |
|
'choices'][0]["delta"]["content"] |
|
if token_counter == 0: |
|
history.append(" " + partial_words) |
|
else: |
|
history[-1] = partial_words |
|
chatbot[-1] = (parse_text(history[-2]), parse_text(history[-1])) |
|
token_counter += 1 |
|
yield chatbot, history, status_text |
|
else: |
|
try: |
|
responsejson = json.loads(response.text) |
|
content = responsejson["choices"][0]["message"]["content"] |
|
history.append(content) |
|
chatbot.append((parse_text(history[-2]), parse_text(content))) |
|
status_text = "精简完成" |
|
except: |
|
chatbot.append((parse_text(history[-1]), "☹️发生了错误,请检查网络连接或者稍后再试。")) |
|
status_text = "status: ERROR" |
|
yield chatbot, history, status_text |
|
|
|
|
|
|
|
def delete_last_conversation(chatbot, history): |
|
if "☹️发生了错误" in chatbot[-1][1]: |
|
chatbot.pop() |
|
print(history) |
|
return chatbot, history |
|
history.pop() |
|
history.pop() |
|
print(history) |
|
return chatbot, history |
|
|
|
def save_chat_history(filename, system, history, chatbot): |
|
if filename == "": |
|
return |
|
if not filename.endswith(".json"): |
|
filename += ".json" |
|
os.makedirs(HISTORY_DIR, exist_ok=True) |
|
json_s = {"system": system, "history": history, "chatbot": chatbot} |
|
print(json_s) |
|
with open(os.path.join(HISTORY_DIR, filename), "w") as f: |
|
json.dump(json_s, f) |
|
|
|
|
|
def load_chat_history(filename): |
|
with open(os.path.join(HISTORY_DIR, filename), "r") as f: |
|
json_s = json.load(f) |
|
print(json_s) |
|
return filename, json_s["system"], json_s["history"], json_s["chatbot"] |
|
|
|
|
|
def get_file_names(dir, plain=False, filetype=".json"): |
|
|
|
try: |
|
files = sorted([f for f in os.listdir(dir) if f.endswith(filetype)]) |
|
except FileNotFoundError: |
|
files = [] |
|
if plain: |
|
return files |
|
else: |
|
return gr.Dropdown.update(choices=files) |
|
|
|
def get_history_names(plain=False): |
|
return get_file_names(HISTORY_DIR, plain) |
|
|
|
def load_template(filename, mode=0): |
|
lines = [] |
|
with open(os.path.join(TEMPLATES_DIR, filename), "r", encoding="utf8") as csvfile: |
|
reader = csv.reader(csvfile) |
|
lines = list(reader) |
|
lines = lines[1:] |
|
if mode == 1: |
|
return sorted([row[0] for row in lines]) |
|
elif mode == 2: |
|
return {row[0]:row[1] for row in lines} |
|
else: |
|
return {row[0]:row[1] for row in lines}, gr.Dropdown.update(choices=sorted([row[0] for row in lines])) |
|
|
|
def get_template_names(plain=False): |
|
return get_file_names(TEMPLATES_DIR, plain, filetype=".csv") |
|
|
|
def reset_state(): |
|
return [], [] |
|
|
|
|
|
def compose_system(system_prompt): |
|
return {"role": "system", "content": system_prompt} |
|
|
|
|
|
def compose_user(user_input): |
|
return {"role": "user", "content": user_input} |
|
|
|
|
|
def reset_textbox(): |
|
return gr.update(value='') |
|
|