Spaces:
Running
Running
import os | |
import random | |
import numpy as np | |
import torch | |
import torch.utils.data | |
from tqdm import tqdm | |
try: | |
from lib import spec_utils | |
except ModuleNotFoundError: | |
import spec_utils | |
class VocalRemoverTrainingSet(torch.utils.data.Dataset): | |
def __init__(self, training_set, cropsize, reduction_rate, reduction_weight, mixup_rate, mixup_alpha): | |
self.training_set = training_set | |
self.cropsize = cropsize | |
self.reduction_rate = reduction_rate | |
self.reduction_weight = reduction_weight | |
self.mixup_rate = mixup_rate | |
self.mixup_alpha = mixup_alpha | |
def __len__(self): | |
return len(self.training_set) | |
def do_crop(self, X_path, y_path): | |
X_mmap = np.load(X_path, mmap_mode='r') | |
y_mmap = np.load(y_path, mmap_mode='r') | |
start = np.random.randint(0, X_mmap.shape[2] - self.cropsize) | |
end = start + self.cropsize | |
X_crop = np.array(X_mmap[:, :, start:end], copy=True) | |
y_crop = np.array(y_mmap[:, :, start:end], copy=True) | |
return X_crop, y_crop | |
def do_aug(self, X, y): | |
if np.random.uniform() < self.reduction_rate: | |
y = spec_utils.aggressively_remove_vocal(X, y, self.reduction_weight) | |
if np.random.uniform() < 0.5: | |
# swap channel | |
X = X[::-1].copy() | |
y = y[::-1].copy() | |
if np.random.uniform() < 0.01: | |
# inst | |
X = y.copy() | |
# if np.random.uniform() < 0.01: | |
# # mono | |
# X[:] = X.mean(axis=0, keepdims=True) | |
# y[:] = y.mean(axis=0, keepdims=True) | |
return X, y | |
def do_mixup(self, X, y): | |
idx = np.random.randint(0, len(self)) | |
X_path, y_path, coef = self.training_set[idx] | |
X_i, y_i = self.do_crop(X_path, y_path) | |
X_i /= coef | |
y_i /= coef | |
X_i, y_i = self.do_aug(X_i, y_i) | |
lam = np.random.beta(self.mixup_alpha, self.mixup_alpha) | |
X = lam * X + (1 - lam) * X_i | |
y = lam * y + (1 - lam) * y_i | |
return X, y | |
def __getitem__(self, idx): | |
X_path, y_path, coef = self.training_set[idx] | |
X, y = self.do_crop(X_path, y_path) | |
X /= coef | |
y /= coef | |
X, y = self.do_aug(X, y) | |
if np.random.uniform() < self.mixup_rate: | |
X, y = self.do_mixup(X, y) | |
X_mag = np.abs(X) | |
y_mag = np.abs(y) | |
return X_mag, y_mag | |
class VocalRemoverValidationSet(torch.utils.data.Dataset): | |
def __init__(self, patch_list): | |
self.patch_list = patch_list | |
def __len__(self): | |
return len(self.patch_list) | |
def __getitem__(self, idx): | |
path = self.patch_list[idx] | |
data = np.load(path) | |
X, y = data['X'], data['y'] | |
X_mag = np.abs(X) | |
y_mag = np.abs(y) | |
return X_mag, y_mag | |
def make_pair(mix_dir, inst_dir): | |
input_exts = ['.wav', '.m4a', '.mp3', '.mp4', '.flac'] | |
X_list = sorted([ | |
os.path.join(mix_dir, fname) | |
for fname in os.listdir(mix_dir) | |
if os.path.splitext(fname)[1] in input_exts | |
]) | |
y_list = sorted([ | |
os.path.join(inst_dir, fname) | |
for fname in os.listdir(inst_dir) | |
if os.path.splitext(fname)[1] in input_exts | |
]) | |
filelist = list(zip(X_list, y_list)) | |
return filelist | |
def train_val_split(dataset_dir, split_mode, val_rate, val_filelist): | |
if split_mode == 'random': | |
filelist = make_pair( | |
os.path.join(dataset_dir, 'mixtures'), | |
os.path.join(dataset_dir, 'instruments') | |
) | |
random.shuffle(filelist) | |
if len(val_filelist) == 0: | |
val_size = int(len(filelist) * val_rate) | |
train_filelist = filelist[:-val_size] | |
val_filelist = filelist[-val_size:] | |
else: | |
train_filelist = [ | |
pair for pair in filelist | |
if list(pair) not in val_filelist | |
] | |
elif split_mode == 'subdirs': | |
if len(val_filelist) != 0: | |
raise ValueError('`val_filelist` option is not available with `subdirs` mode') | |
train_filelist = make_pair( | |
os.path.join(dataset_dir, 'training/mixtures'), | |
os.path.join(dataset_dir, 'training/instruments') | |
) | |
val_filelist = make_pair( | |
os.path.join(dataset_dir, 'validation/mixtures'), | |
os.path.join(dataset_dir, 'validation/instruments') | |
) | |
return train_filelist, val_filelist | |
def make_padding(width, cropsize, offset): | |
left = offset | |
roi_size = cropsize - offset * 2 | |
if roi_size == 0: | |
roi_size = cropsize | |
right = roi_size - (width % roi_size) + left | |
return left, right, roi_size | |
def make_training_set(filelist, sr, hop_length, n_fft): | |
ret = [] | |
for X_path, y_path in tqdm(filelist): | |
X, y, X_cache_path, y_cache_path = spec_utils.cache_or_load( | |
X_path, y_path, sr, hop_length, n_fft | |
) | |
coef = np.max([np.abs(X).max(), np.abs(y).max()]) | |
ret.append([X_cache_path, y_cache_path, coef]) | |
return ret | |
def make_validation_set(filelist, cropsize, sr, hop_length, n_fft, offset): | |
patch_list = [] | |
patch_dir = 'cs{}_sr{}_hl{}_nf{}_of{}'.format(cropsize, sr, hop_length, n_fft, offset) | |
os.makedirs(patch_dir, exist_ok=True) | |
for X_path, y_path in tqdm(filelist): | |
basename = os.path.splitext(os.path.basename(X_path))[0] | |
X, y, _, _ = spec_utils.cache_or_load(X_path, y_path, sr, hop_length, n_fft) | |
coef = np.max([np.abs(X).max(), np.abs(y).max()]) | |
X, y = X / coef, y / coef | |
l, r, roi_size = make_padding(X.shape[2], cropsize, offset) | |
X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode='constant') | |
y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode='constant') | |
len_dataset = int(np.ceil(X.shape[2] / roi_size)) | |
for j in range(len_dataset): | |
outpath = os.path.join(patch_dir, '{}_p{}.npz'.format(basename, j)) | |
start = j * roi_size | |
if not os.path.exists(outpath): | |
np.savez( | |
outpath, | |
X=X_pad[:, :, start:start + cropsize], | |
y=y_pad[:, :, start:start + cropsize] | |
) | |
patch_list.append(outpath) | |
return patch_list | |
def get_oracle_data(X, y, oracle_loss, oracle_rate, oracle_drop_rate): | |
k = int(len(X) * oracle_rate * (1 / (1 - oracle_drop_rate))) | |
n = int(len(X) * oracle_rate) | |
indices = np.argsort(oracle_loss)[::-1][:k] | |
indices = np.random.choice(indices, n, replace=False) | |
oracle_X = X[indices].copy() | |
oracle_y = y[indices].copy() | |
return oracle_X, oracle_y, indices | |
if __name__ == "__main__": | |
import sys | |
import utils | |
mix_dir = sys.argv[1] | |
inst_dir = sys.argv[2] | |
outdir = sys.argv[3] | |
os.makedirs(outdir, exist_ok=True) | |
filelist = make_pair(mix_dir, inst_dir) | |
for mix_path, inst_path in tqdm(filelist): | |
mix_basename = os.path.splitext(os.path.basename(mix_path))[0] | |
X_spec, y_spec, _, _ = spec_utils.cache_or_load( | |
mix_path, inst_path, 44100, 1024, 2048 | |
) | |
X_mag = np.abs(X_spec) | |
y_mag = np.abs(y_spec) | |
v_mag = X_mag - y_mag | |
v_mag *= v_mag > y_mag | |
outpath = '{}/{}_Vocal.jpg'.format(outdir, mix_basename) | |
v_image = spec_utils.spectrogram_to_image(v_mag) | |
utils.imwrite(outpath, v_image) | |