Spaces:
Sleeping
Sleeping
from huggingface_hub import from_pretrained_keras | |
import tensorflow as tf | |
import numpy as np | |
import transformers | |
labels = ["contradiction", "entailment", "neutral"] | |
model = from_pretrained_keras("keras-io/bert-semantic-similarity") | |
class BertSemanticDataGenerator(tf.keras.utils.Sequence): | |
"""Generates batches of data.""" | |
def __init__( | |
self, | |
sentence_pairs, | |
labels, | |
batch_size=32, | |
shuffle=True, | |
include_targets=True, | |
): | |
self.sentence_pairs = sentence_pairs | |
self.labels = labels | |
self.shuffle = shuffle | |
self.batch_size = batch_size | |
self.include_targets = include_targets | |
# Load our BERT Tokenizer to encode the text. | |
# We will use base-base-uncased pretrained model. | |
self.tokenizer = transformers.BertTokenizer.from_pretrained( | |
"bert-base-uncased", do_lower_case=True | |
) | |
self.indexes = np.arange(len(self.sentence_pairs)) | |
self.on_epoch_end() | |
def __len__(self): | |
# Denotes the number of batches per epoch. | |
return len(self.sentence_pairs) // self.batch_size | |
def __getitem__(self, idx): | |
# Retrieves the batch of index. | |
indexes = self.indexes[idx * self.batch_size : (idx + 1) * self.batch_size] | |
sentence_pairs = self.sentence_pairs[indexes] | |
# With BERT tokenizer's batch_encode_plus batch of both the sentences are | |
# encoded together and separated by [SEP] token. | |
encoded = self.tokenizer.batch_encode_plus( | |
sentence_pairs.tolist(), | |
add_special_tokens=True, | |
max_length=128, | |
truncation=True, | |
return_attention_mask=True, | |
return_token_type_ids=True, | |
pad_to_max_length=True, | |
return_tensors="tf", | |
) | |
# Convert batch of encoded features to numpy array. | |
input_ids = np.array(encoded["input_ids"], dtype="int32") | |
attention_masks = np.array(encoded["attention_mask"], dtype="int32") | |
token_type_ids = np.array(encoded["token_type_ids"], dtype="int32") | |
# Set to true if data generator is used for training/validation. | |
if self.include_targets: | |
labels = np.array(self.labels[indexes], dtype="int32") | |
return [input_ids, attention_masks, token_type_ids], labels | |
else: | |
return [input_ids, attention_masks, token_type_ids] | |
def get_similarity(sentence1, sentence2): | |
sentence_pairs = np.array([[str(sentence1), str(sentence2)]]) | |
test_data = BertSemanticDataGenerator( | |
sentence_pairs, labels=None, batch_size=1, shuffle=False, include_targets=False, | |
) | |
probs = model.predict(test_data[0])[0] | |
labels_probs = {labels[i]: float(probs[i]) for i, _ in enumerate(labels)} | |
return labels_probs['entailment'] |