readinglevelconverter / bert_similarity.py
Mjwarren3's picture
Addind real application
7b28cbc
from huggingface_hub import from_pretrained_keras
import tensorflow as tf
import numpy as np
import transformers
labels = ["contradiction", "entailment", "neutral"]
model = from_pretrained_keras("keras-io/bert-semantic-similarity")
class BertSemanticDataGenerator(tf.keras.utils.Sequence):
"""Generates batches of data."""
def __init__(
self,
sentence_pairs,
labels,
batch_size=32,
shuffle=True,
include_targets=True,
):
self.sentence_pairs = sentence_pairs
self.labels = labels
self.shuffle = shuffle
self.batch_size = batch_size
self.include_targets = include_targets
# Load our BERT Tokenizer to encode the text.
# We will use base-base-uncased pretrained model.
self.tokenizer = transformers.BertTokenizer.from_pretrained(
"bert-base-uncased", do_lower_case=True
)
self.indexes = np.arange(len(self.sentence_pairs))
self.on_epoch_end()
def __len__(self):
# Denotes the number of batches per epoch.
return len(self.sentence_pairs) // self.batch_size
def __getitem__(self, idx):
# Retrieves the batch of index.
indexes = self.indexes[idx * self.batch_size : (idx + 1) * self.batch_size]
sentence_pairs = self.sentence_pairs[indexes]
# With BERT tokenizer's batch_encode_plus batch of both the sentences are
# encoded together and separated by [SEP] token.
encoded = self.tokenizer.batch_encode_plus(
sentence_pairs.tolist(),
add_special_tokens=True,
max_length=128,
truncation=True,
return_attention_mask=True,
return_token_type_ids=True,
pad_to_max_length=True,
return_tensors="tf",
)
# Convert batch of encoded features to numpy array.
input_ids = np.array(encoded["input_ids"], dtype="int32")
attention_masks = np.array(encoded["attention_mask"], dtype="int32")
token_type_ids = np.array(encoded["token_type_ids"], dtype="int32")
# Set to true if data generator is used for training/validation.
if self.include_targets:
labels = np.array(self.labels[indexes], dtype="int32")
return [input_ids, attention_masks, token_type_ids], labels
else:
return [input_ids, attention_masks, token_type_ids]
def get_similarity(sentence1, sentence2):
sentence_pairs = np.array([[str(sentence1), str(sentence2)]])
test_data = BertSemanticDataGenerator(
sentence_pairs, labels=None, batch_size=1, shuffle=False, include_targets=False,
)
probs = model.predict(test_data[0])[0]
labels_probs = {labels[i]: float(probs[i]) for i, _ in enumerate(labels)}
return labels_probs['entailment']